Build production-ready AI agents in three lines of code.
Powered by GPT-5.2, Solana Agent delivers zero-hallucination tool calling with precise instruction following. This is the foundation for building reliable, production-grade agents like the Solana Agent Trading Copilot.
- No Hallucinations - GPT-5.2's superior instruction following means agents do exactly what you tell them and don't make up results
- Reliable Tool Calling - Tools execute correctly, every time, with proper argument handling
- True Multi-Agent Orchestration - Agents collaborate seamlessly with intelligent routing
- Persistent Memory - Context preserved across all interactions for coherent conversations
- Production Proven - Powers real applications handling real users and real transactions
- Three lines of code setup
- Simple JSON agent definitions
- Multi-modal support (text, audio, images)
- Streaming responses
- Solana blockchain integration
- Smart workflows with automatic tool chaining
- Agentic forms for structured data collection
- Input/output guardrails
- Observability via Pydantic Logfire
- CometHeart - AI mobile companion
- Solana Agent Trading Copilot - Telegram trading bot with zero hallucinations
Solana Agent leverages GPT-5.2's breakthrough capabilities:
Precise Tool Execution - When your agent needs to check a wallet balance, execute a trade, or send an email, it happens exactly as instructed. No made-up parameters. No phantom tool calls.
Instruction Fidelity - Agent instructions are followed to the letter. Define an agent's personality, constraints, and behavior—and that's exactly what you get.
Complex Workflow Handling - Chain multiple tools together naturally. "Get my SOL balance and email it to me" just works, with each step executing correctly in sequence.
Define tools, write natural language prompts, and let Solana Agent orchestrate the rest.
Example: "Get my balances for my Solana wallet and then email them to me."
Solana Agent automatically:
- Calls the Solana Balance tool to retrieve your balances
- Passes the result to the Zapier MCP tool
- Sends the email via Mailgun
No brittle workflow definitions. No manual orchestration. Just tools and prompts.
- Python - Programming Language
- OpenAI - AI Model Provider
- MongoDB - Conversational History (optional)
- Zep Cloud - Conversational Memory (optional)
- Pydantic Logfire - Observability and Tracing (optional)
OpenAI
- gpt-5.2 (agent & router)
- tts-1 (audio TTS)
- gpt-4o-mini-transcribe (audio transcription)
You can install Solana Agent using pip:
pip install solana-agent
In both flows of single and multiple agents - it is one user query to one agent using one or many tools (if needed).
An agent can have multiple tools and will choose the best ones to fulfill the user's query.
Routing is determined by optimal domain expertise of the agent for the user's query.
When the agent uses tools it feeds the tools output back to itself to generate the final response.
This is important as tools generally output unstructured and unformatted data that the agent needs to prepare for the user.
Keep this in mind while designing your agentic systems using Solana Agent.
Single Agent
┌────────┐ ┌─────────┐ ┌────────-┐
│ │ │ │ │ │
│ │ │ │ │ │
│ User │◄──────►│ Agent │◄──────►│ Tools │
│ │ │ │ │ │
│ │ │ │ │ │
└────────┘ └─────────┘ └────────-┘
Multiple Agents
┌────────┐ ┌──────────┐ ┌─────────┐ ┌────────-┐
│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
┌───►│ User ├───────►│ Router ├───────►│ Agent │◄──────►│ Tools │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ └────────┘ └──────────┘ └────┬────┘ └────────-┘
│ │
│ │
│ │
│ │
└───────────────────────────────────────────────┘
from solana_agent import SolanaAgent
config = {
"openai": {
"api_key": "your-openai-api-key",
"model": "gpt-5.2", # Optional, defaults to gpt-5.2
},
"agents": [
{
"name": "research_specialist",
"instructions": "You are an expert researcher who synthesizes complex information clearly.",
"specialization": "Research and knowledge synthesis",
},
{
"name": "customer_support",
"instructions": "You provide friendly, helpful customer support responses.",
"specialization": "Customer inquiries",
}
],
}
solana_agent = SolanaAgent(config=config)
async for response in solana_agent.process("user123", "What are the latest AI developments?"):
print(response, end="")from solana_agent import SolanaAgent
config = {
"openai": {
"api_key": "your-openai-api-key",
},
"agents": [
{
"name": "research_specialist",
"instructions": "You are an expert researcher who synthesizes complex information clearly.",
"specialization": "Research and knowledge synthesis",
},
{
"name": "customer_support",
"instructions": "You provide friendly, helpful customer support responses.",
"specialization": "Customer inquiries",
}
],
}
solana_agent = SolanaAgent(config=config)
audio_content = await audio_file.read()
async for response in solana_agent.process("user123", audio_content, output_format="audio", audio_voice="nova", audio_input_format="webm", audio_output_format="aac"):
print(response, end="")from solana_agent import SolanaAgent
config = {
"openai": {
"api_key": "your-openai-api-key",
},
"agents": [
{
"name": "research_specialist",
"instructions": "You are an expert researcher who synthesizes complex information clearly.",
"specialization": "Research and knowledge synthesis",
},
{
"name": "customer_support",
"instructions": "You provide friendly, helpful customer support responses.",
"specialization": "Customer inquiries",
}
],
}
solana_agent = SolanaAgent(config=config)
async for response in solana_agent.process("user123", "What is the latest news on Elon Musk?", output_format="audio", audio_voice="nova", audio_output_format="aac"):
print(response, end="")from solana_agent import SolanaAgent
config = {
"openai": {
"api_key": "your-openai-api-key",
},
"agents": [
{
"name": "research_specialist",
"instructions": "You are an expert researcher who synthesizes complex information clearly.",
"specialization": "Research and knowledge synthesis",
},
{
"name": "customer_support",
"instructions": "You provide friendly, helpful customer support responses.",
"specialization": "Customer inquiries",
}
],
}
solana_agent = SolanaAgent(config=config)
audio_content = await audio_file.read()
async for response in solana_agent.process("user123", audio_content, audio_input_format="aac"):
print(response, end="")from solana_agent import SolanaAgent
config = {
"openai": {
"api_key": "your-openai-api-key",
},
"agents": [
{
"name": "vision_expert",
"instructions": "You are an expert at analyzing images and answering questions about them.",
"specialization": "Image analysis",
}
],
}
solana_agent = SolanaAgent(config=config)
# Example with an image URL
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
# Example reading image bytes from a file
image_bytes = await image_file.read()
# You can mix URLs and bytes in the list
images_to_process = [
image_url,
image_bytes,
]
async for response in solana_agent.process("user123", "What is in this image? Describe the scene.", images=images_to_process):
print(response, end="")You can attach a JSON Schema to any agent in your config so it can collect structured data conversationally.
from solana_agent import SolanaAgent
config = {
"openai": {
"api_key": "your-openai-api-key",
},
"agents": [
{
"name": "customer_support",
"instructions": "You provide friendly, helpful customer support responses.",
"specialization": "Customer inquiries",
"capture_name": "contact_info",
"capture_schema": {
"type": "object",
"properties": {
"email": { "type": "string" },
"phone": { "type": "string" },
"newsletter_subscribe": { "type": "boolean" }
},
"required": ["email"]
}
}
]
}
solana_agent = SolanaAgent(config=config)
async for response in solana_agent.process("user123", "What are the latest AI developments?"):
print(response, end="")Solana Agent includes a command-line interface (CLI) for text-based chat using a configuration file.
Ensure you have a valid configuration file (e.g., config.json) containing at least your OpenAI API key and agent definitions.
./config.json
{
"openai": {
"api_key": "your-openai-api-key"
},
"agents": [
{
"name": "default_agent",
"instructions": "You are a helpful AI assistant.",
"specialization": "general"
}
]
}Also ensure that you have pip install uv to call uvx.
uvx solana-agent [OPTIONS]
Options:
--user-id TEXT: The user ID for the conversation (default: cli_user).
--config TEXT: Path to the configuration JSON file (default: config.json).
--prompt TEXT: Optional system prompt override for the agent.
--help: Show help message and exit.
# Using default config.json and user_id
uvx solana-agent
# Specifying user ID and config path
uvx solana-agent --user-id my_cli_session --config ./my_agent_config.jsonconfig = {
"business": {
"mission": "To provide users with a one-stop shop for their queries.",
"values": {
"Friendliness": "Users must be treated fairly, openly, and with friendliness.",
"Ethical": "Agents must use a strong ethical framework in their interactions with users.",
},
"goals": [
"Empower users with great answers to their queries.",
],
"voice": "The voice of the brand is that of a research business."
},
}config = {
"mongo": {
"connection_string": "your-mongo-connection-string",
"database": "your-database-name"
},
}config = {
"zep": {
"api_key": "your-zep-cloud-api-key",
},
}config = {
"logfire": {
"api_key": "your-logfire-write-token",
},
}Guardrails allow you to process and potentially modify user input before it reaches the agent (Input Guardrails) and agent output before it's sent back to the user (Output Guardrails). This is useful for implementing safety checks, content moderation, data sanitization, or custom transformations.
Guardrails don't work with structured outputs.
Solana Agent provides a built-in PII scrubber based on scrubadub.
from solana_agent import SolanaAgent
config = {
"guardrails": {
"input": [
# Example using a custom input guardrail
{
"class": "MyInputGuardrail",
"config": {"setting1": "value1"}
},
# Example using the built-in PII guardrail for input
{
"class": "solana_agent.guardrails.pii.PII",
"config": {
"locale": "en_GB", # Optional: Specify locale (default: en_US)
"replacement": "[REDACTED]" # Optional: Custom replacement format
}
}
],
"output": [
# Example using a custom output guardrail
{
"class": "MyOutputGuardrail",
"config": {"filter_level": "high"}
},
# Example using the built-in PII guardrail for output (with defaults)
{
"class": "solana_agent.guardrails.pii.PII"
# No config needed to use defaults
}
]
},
}Guardrails don't work with structured outputs.
from solana_agent import InputGuardrail, OutputGuardrail
import logging
logger = logging.getLogger(__name__)
class MyInputGuardrail(InputGuardrail):
def __init__(self, config=None):
super().__init__(config)
self.setting1 = self.config.get("setting1", "default_value")
logger.info(f"MyInputGuardrail initialized with setting1: {self.setting1}")
async def process(self, text: str) -> str:
# Example: Convert input to lowercase
processed_text = text.lower()
logger.debug(f"Input Guardrail processed: {text} -> {processed_text}")
return processed_text
class MyOutputGuardrail(OutputGuardrail):
def __init__(self, config=None):
super().__init__(config)
self.filter_level = self.config.get("filter_level", "low")
logger.info(f"MyOutputGuardrail initialized with filter_level: {self.filter_level}")
async def process(self, text: str) -> str:
# Example: Basic profanity filtering (replace with a real library)
if self.filter_level == "high" and "badword" in text:
processed_text = text.replace("badword", "*******")
logger.warning(f"Output Guardrail filtered content.")
return processed_text
logger.debug("Output Guardrail passed text through.")
return textTools empower agents to interact with external systems, fetch data, or perform actions. They can be used reactively within a user conversation or proactively when an agent is triggered autonomously.
Tools can be used from plugins like Solana Agent Kit (sakit) or via inline tools. Tools available via plugins integrate automatically with Solana Agent.
pip install sakitfrom solana_agent import SolanaAgent, Tool
class TestTool(Tool):
def __init__(self):
# your tool initialization - delete the following pass
pass
@property
def name(self) -> str:
return "test_function"
@property
def description(self) -> str:
return "Test function for Solana Agent"
def configure(self, config: Dict[str, Any]) -> None:
"""Configure with all possible API key locations."""
super().configure(config)
# read your config values - delete the following pass
pass
def get_schema(self) -> Dict[str, Any]:
# this is an example schema
return {
"type": "object",
"properties": {
"query": {"type": "string", "description": "Search query text"},
"user_id": {"type": "string", "description": "User ID for the search session"}
},
"required": ["query", "user_id"],
"additionalProperties": False,
}
async def execute(self, **params) -> Dict[str, Any]:
try:
# your tool logic
result = "Your tool results"
return {
"status": "success",
"result": result,
}
except Exception as e:
return {
"status": "error",
"message": f"Error: {str(e)}",
}
config = {
"openai": {
"api_key": "your-openai-api-key",
},
"agents": [
{
"name": "research_specialist",
"instructions": "You are an expert researcher who synthesizes complex information clearly.",
"specialization": "Research and knowledge synthesis",
},
{
"name": "customer_support",
"instructions": "You provide friendly, helpful customer support responses.",
"specialization": "Customer inquiries",
}
],
}
solana_agent = SolanaAgent(config=config)
test_tool = TestTool()
solana_agent.register_tool("customer_support", test_tool)
async for response in solana_agent.process("user123", "What are the latest AI developments?"):
print(response, end="")While Solana Agent facilitates request-response interactions, the underlying architecture supports building autonomous agents. You can achieve autonomy by orchestrating calls based on external triggers rather than direct user input.
Key Concepts:
- External Triggers: Use schedulers like cron, message queues (RabbitMQ, Kafka), monitoring systems, webhooks, or other event sources to initiate agent actions.
- Programmatic Calls: Instead of a user typing a message, your triggering system calls with a specific message (acting as instructions or data for the task) and potentially a dedicated user representing the autonomous process.
- Tool-Centric Tasks: Autonomous agents often focus on executing specific tools. The prompt can instruct the agent to use a particular tool with given parameters derived from the triggering event.
- Example Scenario: An agent could be triggered hourly by a scheduler. The
messagecould be "Check the SOL balance for wallet X using thesolanatool." The agent executes the tool, and the result could be logged or trigger another tool (e.g., usingmcpto send an alert if the balance is low).
By combining Solana Agent's agent definitions, tool integration, and routing with external orchestration, you can create sophisticated autonomous systems.
from solana_agent import SolanaAgent
config = {
"openai": {
"api_key": "your-openai-api-key",
},
"agents": [
{
"name": "customer_support",
"instructions": "You provide friendly, helpful customer support responses.",
"specialization": "Customer inquiries",
}
],
}
solana_agent = SolanaAgent(config=config)
async for response in solana_agent.process("user123", "How do replace the latch on my dishwasher?", "This is my corporate appliance fixing FAQ"):
print(response, end="")In advanced cases like implementing a ticketing system on-top of Solana Agent - you can use your own router.
from solana_agent import SolanaAgent
from solana_agent.interfaces.services.routing import RoutingService as RoutingServiceInterface
config = {
"openai": {
"api_key": "your-openai-api-key",
},
"agents": [
{
"name": "research_specialist",
"instructions": "You are an expert researcher who synthesizes complex information clearly.",
"specialization": "Research and knowledge synthesis",
},
{
"name": "customer_support",
"instructions": "You provide friendly, helpful customer support responses.",
"specialization": "Customer inquiries",
}
],
}
class Router(RoutingServiceInterface)
def __init__(self):
# your router initialization - delete the following pass
pass
async def route_query(self, query: str) -> str:
# a simple example to route always to customer_support agent
return "customer_support"
router = Router()
solana_agent = SolanaAgent(config=config)
async for response in solana_agent.process("user123", "What are the latest AI developments?", router=router):
print(response, end="")The official up-to-date documentation site
Solana Agent Documentation Site
The official collection of tools in one plugin
The official example app written in FastAPI and Next.js
Compare Python Agent Frameworks
If you have a question, feedback, or feature request - please open a GitHub discussion.
If you find a bug - please open a GitHub issue.
We are currently accepting PRs if approved in discussions. Make sure all tests pass and the README & docs are updated.
To run the documentation site locally run make livehtml in the root directory.
To run the test suite locally run poetry run pytest --cov=solana_agent --cov-report=html in the root directory.
This project is licensed under the MIT License - see the LICENSE file for details.
