Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
139 changes: 67 additions & 72 deletions impc_etl/jobs/load/impc_kg/publications_mapper.py
Original file line number Diff line number Diff line change
@@ -1,81 +1,76 @@
import luigi
from impc_etl.jobs.load.impc_bulk_api.impc_api_mapper import to_camel_case
from luigi.contrib.spark import PySparkTask
from pyspark import SparkContext
from pyspark.sql import SparkSession
from pyspark.sql.functions import col
"""
Module to generate the publications data as JSON for the KG.
"""
import logging
import textwrap

from impc_etl.jobs.load.impc_kg.impc_kg_helper import add_unique_id, map_unique_ids
from impc_etl.workflow.config import ImpcConfig
from airflow.sdk import Variable, asset

from impc_etl.utils.airflow import create_input_asset, create_output_asset
from impc_etl.utils.spark import with_spark_publications_mongo_session

class ImpcKgPublicationsMapper(PySparkTask):
"""
PySpark Task class to parse GenTar Product report data.
"""
task_logger = logging.getLogger("airflow.task")
dr_tag = Variable.get("data_release_tag")

#: Name of the Spark task
name: str = "ImpcKgPublicationsMapper"
# The asset has no dependencies on files as the data used to create it
# is extracted from the publications MongoDB, but to ensure it runs while
# the KG is being built a dependency has been added on
# the output of the KG procedure_mapper.
procedure_json_path_asset = create_input_asset("output/impc_kg/procedure_json")

#: Path of the output directory where the new parquet file will be generated.
output_path: luigi.Parameter = luigi.Parameter()
publications_output_asset = create_output_asset("/impc_kg/publications_json")

def requires(self):
return []

def output(self):
"""
Returns the full parquet path as an output for the Luigi Task
(e.g. impc/dr15.2/parquet/product_report_parquet)
"""
return ImpcConfig().get_target(f"{self.output_path}/impc_kg/publications_json")

def app_options(self):
"""
Generates the options pass to the PySpark job
"""
return [
self.output().path,
]

def main(self, sc: SparkContext, *args):
@asset.multi(
schedule=[procedure_json_path_asset],
outlets=[publications_output_asset],
dag_id=f"{dr_tag}_impc_kg_publications_mapper",
description=textwrap.dedent(
"""
Takes in a SparkContext and the list of arguments generated by `app_options` and executes the PySpark job.
PySpark task to create the publications Knowledge Graph JSON files
based on the data in the production publications MongoDB.
"""
spark = SparkSession(sc)

# Parsing app options
output_path = args[0]

publications_df = spark.read.format("mongodb").load()

publications_df = publications_df.where(col("status") == "reviewed").select(
"title",
"authorString",
"consortiumPaper",
"doi",
col("firstPublicationDate").alias("publicationDate"),
col("journalInfo.journal.title").alias("journalTitle"),
col("alleles.acc").alias("mgiAlleleAccessionIds"),
col("pmid").alias("pmId"),
"abstractText",
"meshHeadingList",
"grantsList",
)

publications_df = add_unique_id(
publications_df,
"publication_id",
["pmId"],
)

publications_df = map_unique_ids(
publications_df, "alleles", "mgiAlleleAccessionIds"
)

publications_df = publications_df.drop("mgiAlleleAccessionIds")

publications_df.coalesce(1).write.json(
output_path, mode="overwrite", compression="gzip"
)
),
tags=["impc_kg"],
)
@with_spark_publications_mongo_session
def impc_kg_publications_mapper():

from impc_etl.jobs.load.impc_kg.impc_kg_helper import add_unique_id, map_unique_ids

from pyspark.sql import SparkSession
from pyspark.sql.functions import col

spark = SparkSession.builder.getOrCreate()

publications_df = spark.read.format("mongodb").option("collection", "references").load()

publications_df = publications_df.where(col("status") == "reviewed").select(
"title",
"authorString",
"consortiumPaper",
"doi",
col("firstPublicationDate").alias("publicationDate"),
col("journalInfo.journal.title").alias("journalTitle"),
col("alleles.acc").alias("mgiAlleleAccessionIds"),
col("pmid").alias("pmId"),
"abstractText",
"meshHeadingList",
"grantsList",
)

publications_df = add_unique_id(
publications_df,
"publication_id",
["pmId"],
)

publications_df = map_unique_ids(
publications_df, "alleles", "mgiAlleleAccessionIds"
)

publications_df = publications_df.drop("mgiAlleleAccessionIds")

publications_df.coalesce(1).write.json(
publications_output_asset.uri, mode="overwrite", compression="gzip"
)