Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
166 changes: 80 additions & 86 deletions impc_etl/jobs/load/impc_kg/parameter_mapper.py
Original file line number Diff line number Diff line change
@@ -1,96 +1,90 @@
import luigi
from impc_etl.jobs.load.impc_bulk_api.impc_api_mapper import to_camel_case
from luigi.contrib.spark import PySparkTask
from pyspark import SparkContext
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, trim, when, lit
"""
Module to generate the statistical result data as JSON for the KG.
"""
import logging
import textwrap

from impc_etl.jobs.load.impc_kg.impc_kg_helper import add_unique_id
from impc_etl.jobs.load.solr.pipeline_mapper import ImpressToParameterMapper
from impc_etl.workflow.config import ImpcConfig
from airflow.sdk import Variable, asset

from impc_etl.utils.airflow import create_input_asset, create_output_asset
from impc_etl.utils.spark import with_spark_session

class ImpcKgParameterMapper(PySparkTask):
"""
PySpark Task class to parse GenTar Product report data.
"""
task_logger = logging.getLogger("airflow.task")
dr_tag = Variable.get("data_release_tag")

#: Name of the Spark task
name: str = "ImpcKgParameterMapper"
impress_parameter_parquet_asset = create_input_asset("output/impress_parameter_parquet")

#: Path of the output directory where the new parquet file will be generated.
output_path: luigi.Parameter = luigi.Parameter()
parameter_output_asset = create_output_asset("/impc_kg/parameter_json")

def requires(self):
return [ImpressToParameterMapper()]

def output(self):
"""
Returns the full parquet path as an output for the Luigi Task
(e.g. impc/dr15.2/parquet/product_report_parquet)
@asset.multi(
schedule=[impress_parameter_parquet_asset],
outlets=[parameter_output_asset],
dag_id=f"{dr_tag}_impc_kg_parameter_mapper",
description=textwrap.dedent(
"""
return ImpcConfig().get_target(f"{self.output_path}/impc_kg/parameter_json")

def app_options(self):
PySpark task to create the parameter JSON fro the Knowledge Graph
from the output of the IMPReSS parameter mapper.
"""
Generates the options pass to the PySpark job
"""
return [
self.input()[0].path,
self.output().path,
]

def main(self, sc: SparkContext, *args):
"""
Takes in a SparkContext and the list of arguments generated by `app_options` and executes the PySpark job.
"""
spark = SparkSession(sc)

# Parsing app options
input_parquet_path = args[0]
output_path = args[1]

input_df = spark.read.parquet(input_parquet_path)
input_df = add_unique_id(
input_df,
"parameter_id",
["pipeline_stable_id", "procedure_stable_id", "parameter_stable_id"],
)

input_df = input_df.drop("name")

input_df = input_df.withColumn("unit_x", trim(col("unit_x"))).withColumn(
"unit_x", when(~(col("unit_x") == ""), col("unit_x")).otherwise(lit(None))
)
input_df = input_df.withColumn("unit_y", trim(col("unit_y"))).withColumn(
"unit_y", when(~(col("unit_y") == ""), col("unit_y")).otherwise(lit(None))
)
input_df = input_df.withColumnRenamed(
"mp_id",
"potentialPhenotypeTermCuries",
)

input_df = input_df.withColumnRenamed(
"parameter_name",
"name",
)

output_cols = [
"parameter_id",
"parameter_stable_id",
"name",
"data_type",
"unit_x",
"unit_y",
"potentialPhenotypeTermCuries",
]
output_df = input_df.select(*output_cols).distinct()
for col_name in output_df.columns:
output_df = output_df.withColumnRenamed(
col_name,
to_camel_case(col_name),
)
output_df.distinct().coalesce(1).write.option("ignoreNullFields", "false").json(
output_path, mode="overwrite"
),
tags=["impc_kg"],
)
@with_spark_session
def impc_kg_parameter_mapper():

from impc_etl.jobs.load.impc_web_api.impc_web_api_helper import to_camel_case
from impc_etl.jobs.load.impc_kg.impc_kg_helper import add_unique_id

from pyspark.sql import SparkSession
from pyspark.sql.functions import (
trim,
col,
lit,
when,
)

spark = SparkSession.builder.getOrCreate()

input_df = spark.read.parquet(impress_parameter_parquet_asset.uri)
input_df = add_unique_id(
input_df,
"parameter_id",
["pipeline_stable_id", "procedure_stable_id", "parameter_stable_id"],
)

input_df = input_df.drop("name")

input_df = input_df.withColumn("unit_x", trim(col("unit_x"))).withColumn(
"unit_x", when(~(col("unit_x") == ""), col("unit_x")).otherwise(lit(None))
)
input_df = input_df.withColumn("unit_y", trim(col("unit_y"))).withColumn(
"unit_y", when(~(col("unit_y") == ""), col("unit_y")).otherwise(lit(None))
)
input_df = input_df.withColumnRenamed(
"mp_id",
"potentialPhenotypeTermCuries",
)

input_df = input_df.withColumnRenamed(
"parameter_name",
"name",
)

output_cols = [
"parameter_id",
"parameter_stable_id",
"name",
"data_type",
"unit_x",
"unit_y",
"potentialPhenotypeTermCuries",
]
output_df = input_df.select(*output_cols).distinct()
for col_name in output_df.columns:
output_df = output_df.withColumnRenamed(
col_name,
to_camel_case(col_name),
)
output_df.distinct().coalesce(1).write.option("ignoreNullFields", "false").json(
parameter_output_asset.uri, mode="overwrite"
)