Skip to content

Conversation

@indietyp
Copy link
Member

@indietyp indietyp commented Dec 19, 2025

🌟 What is the purpose of this PR?

Add CodSpeed benchmarking support to the repository, enabling performance tracking for Rust code.

Adding inline to the successor iterator gave us another 5-10% in speed, as this happened to be cross crate (hashql-mir -> hashql-core -> hashql-mir).

🔗 Related links

🔍 What does this change?

  • Adds a new GitHub workflow for running CodSpeed benchmarks
  • Integrates cargo-codspeed tool in mise configuration
  • Converts the existing Criterion benchmarks in hashql-mir to use CodSpeed's Criterion compatibility layer
  • Adds allocation limit control methods to the Heap implementation
  • Adds a build:codspeed script to the hashql-mir package.json

Pre-Merge Checklist 🚀

🚢 Has this modified a publishable library?

This PR:

  • does not modify any publishable blocks or libraries, or modifications do not need publishing

📜 Does this require a change to the docs?

The changes in this PR:

  • are internal and do not require a docs change

🕸️ Does this require a change to the Turbo Graph?

The changes in this PR:

  • affected the execution graph, and the turbo.json's have been updated to reflect this

🛡 What tests cover this?

  • The benchmarks themselves serve as tests for the functionality

❓ How to test this?

  1. Run turbo run build:codspeed --filter=hashql-mir to verify the benchmark builds
  2. Run cargo codspeed run to execute codspeed benchmarks locally

@cursor
Copy link

cursor bot commented Dec 19, 2025

PR Summary

Introduces CodSpeed-based benchmarking and minimal heap API additions to support reliable performance testing.

  • CI: new CodSpeed Benchmarks workflow (.github/workflows/codspeed.yml); adds build:codspeed/test:codspeed tasks in turbo.json; installs cargo-codspeed via .config/mise/config.toml
  • hashql-mir: converts Criterion benches to codspeed-criterion-compat, refactors bench harness (benches/transform.rs) to use Bencher with per-iteration batching, adds [[bench]] transform and package.json scripts (build:codspeed, test:codspeed)
  • hashql-core heap: adds Allocator::set_allocation_limit, Heap::set_allocation_limit, and Scratch::with_capacity; minor #[inline] hints
  • Minor perf hinting: add #[inline] on iterator methods in mir (basic_blocks.rs, terminator/mod.rs)

Written by Cursor Bugbot for commit 3326b24. This will update automatically on new commits. Configure here.

@github-actions github-actions bot added area/deps Relates to third-party dependencies (area) area/infra Relates to version control, CI, CD or IaC (area) area/libs Relates to first-party libraries/crates/packages (area) type/eng > backend Owned by the @backend team labels Dec 19, 2025
@codecov
Copy link

codecov bot commented Dec 19, 2025

Codecov Report

❌ Patch coverage is 0% with 11 lines in your changes missing coverage. Please review.
✅ Project coverage is 58.89%. Comparing base (b6338db) to head (3326b24).

Files with missing lines Patch % Lines
libs/@local/hashql/core/src/heap/scratch.rs 0.00% 5 Missing ⚠️
libs/@local/hashql/core/src/heap/allocator.rs 0.00% 3 Missing ⚠️
libs/@local/hashql/core/src/heap/mod.rs 0.00% 3 Missing ⚠️
Additional details and impacted files
@@            Coverage Diff             @@
##             main    #8204      +/-   ##
==========================================
- Coverage   58.90%   58.89%   -0.01%     
==========================================
  Files        1193     1193              
  Lines      112723   112734      +11     
  Branches     5013     5013              
==========================================
+ Hits        66394    66396       +2     
- Misses      45571    45580       +9     
  Partials      758      758              
Flag Coverage Δ
apps.hash-ai-worker-ts 1.32% <ø> (ø)
apps.hash-api 0.00% <ø> (ø)
blockprotocol.type-system 40.84% <ø> (ø)
local.claude-hooks 0.00% <ø> (ø)
local.harpc-client 51.24% <ø> (ø)
local.hash-graph-sdk 10.88% <ø> (ø)
local.hash-isomorphic-utils 0.00% <ø> (ø)
rust.antsi 0.00% <ø> (ø)
rust.error-stack 90.88% <ø> (ø)
rust.harpc-codec 84.70% <ø> (ø)
rust.harpc-net 96.19% <ø> (+0.03%) ⬆️
rust.harpc-tower 66.80% <ø> (ø)
rust.harpc-types 0.00% <ø> (ø)
rust.harpc-wire-protocol 92.23% <ø> (ø)
rust.hash-codec 72.76% <ø> (ø)
rust.hash-graph-api 2.89% <ø> (ø)
rust.hash-graph-authorization 62.47% <ø> (ø)
rust.hash-graph-postgres-store 25.61% <ø> (ø)
rust.hash-graph-store 30.54% <ø> (ø)
rust.hash-graph-temporal-versioning 47.95% <ø> (ø)
rust.hash-graph-types 0.00% <ø> (ø)
rust.hash-graph-validation 83.45% <ø> (ø)
rust.hashql-ast 87.25% <ø> (ø)
rust.hashql-compiletest 46.65% <ø> (ø)
rust.hashql-core 82.32% <0.00%> (-0.05%) ⬇️
rust.hashql-diagnostics 72.43% <ø> (ø)
rust.hashql-eval 68.54% <ø> (ø)
rust.hashql-hir 89.10% <ø> (ø)
rust.hashql-mir 88.18% <ø> (ø)
rust.hashql-syntax-jexpr 94.05% <ø> (ø)

Flags with carried forward coverage won't be shown. Click here to find out more.

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

🚀 New features to boost your workflow:
  • ❄️ Test Analytics: Detect flaky tests, report on failures, and find test suite problems.
  • 📦 JS Bundle Analysis: Save yourself from yourself by tracking and limiting bundle sizes in JS merges.

@codspeed-hq
Copy link

codspeed-hq bot commented Dec 19, 2025

CodSpeed Performance Report

Congrats! CodSpeed is installed 🎉

🆕 13 new benchmarks were detected.

You will start to see performance impacts in the reports once the benchmarks are run from your default branch.

Detected benchmarks

@vercel vercel bot temporarily deployed to Preview – petrinaut December 19, 2025 22:46 Inactive
@vilkinsons
Copy link
Member

@indietyp How will this interact with (replace/complement) the existing benchmark runner/comment bot?

Copy link
Member Author

@indietyp How will this interact with (replace/complement) the existing benchmark runner/comment bot?

They are (for now) different because they test various things. The codspeed tests are currently microbenchmarks (meaning they test only a fraction of the system to evaluate, e.g., the performance of a function or, in our case, an analysis pass). In contrast, the existing benchmarks are macro (they test the whole system). I could see a future (needs to be evaluated in tandem with @TimDiekmann and formulated into a plan) to move the existing macro benchmarks to codspeed as well (as it supports macro benchmarks as well).

My hope here is that we get good benchmarking without having to roll our own, which reduces both the complexity and the code/infrastructure we need to maintain. (similarly to what we do with codecov right now, it's not perfect by any means, but it's good enough™ that an in-house solution is just not worth it)

@github-actions
Copy link
Contributor

Benchmark results

@rust/hash-graph-benches – Integrations

policy_resolution_large

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2002 $$27.9 \mathrm{ms} \pm 287 \mathrm{μs}\left({\color{gray}-1.642 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$3.21 \mathrm{ms} \pm 12.5 \mathrm{μs}\left({\color{gray}-0.241 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1001 $$12.2 \mathrm{ms} \pm 70.0 \mathrm{μs}\left({\color{gray}0.293 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 3314 $$42.0 \mathrm{ms} \pm 311 \mathrm{μs}\left({\color{gray}-0.881 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$14.0 \mathrm{ms} \pm 78.2 \mathrm{μs}\left({\color{gray}-0.020 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 1526 $$23.5 \mathrm{ms} \pm 154 \mathrm{μs}\left({\color{gray}-0.134 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 2078 $$31.0 \mathrm{ms} \pm 202 \mathrm{μs}\left({\color{lightgreen}-28.562 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$3.61 \mathrm{ms} \pm 18.7 \mathrm{μs}\left({\color{lightgreen}-82.293 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 1033 $$14.1 \mathrm{ms} \pm 89.5 \mathrm{μs}\left({\color{lightgreen}-50.645 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_medium

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 102 $$3.63 \mathrm{ms} \pm 16.6 \mathrm{μs}\left({\color{gray}0.930 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.84 \mathrm{ms} \pm 14.5 \mathrm{μs}\left({\color{gray}-0.057 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 51 $$3.19 \mathrm{ms} \pm 16.2 \mathrm{μs}\left({\color{gray}0.502 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 269 $$4.97 \mathrm{ms} \pm 28.9 \mathrm{μs}\left({\color{gray}0.150 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$3.37 \mathrm{ms} \pm 15.9 \mathrm{μs}\left({\color{gray}-0.853 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 107 $$3.96 \mathrm{ms} \pm 21.1 \mathrm{μs}\left({\color{gray}0.503 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 133 $$4.13 \mathrm{ms} \pm 24.3 \mathrm{μs}\left({\color{gray}2.51 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$3.29 \mathrm{ms} \pm 16.2 \mathrm{μs}\left({\color{gray}1.20 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 63 $$3.83 \mathrm{ms} \pm 24.1 \mathrm{μs}\left({\color{gray}-0.053 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_none

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2 $$2.59 \mathrm{ms} \pm 14.1 \mathrm{μs}\left({\color{red}9.40 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.50 \mathrm{ms} \pm 9.39 \mathrm{μs}\left({\color{red}7.47 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1 $$2.60 \mathrm{ms} \pm 11.5 \mathrm{μs}\left({\color{red}5.96 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 8 $$2.80 \mathrm{ms} \pm 13.2 \mathrm{μs}\left({\color{red}6.03 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.68 \mathrm{ms} \pm 10.5 \mathrm{μs}\left({\color{red}7.43 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 3 $$2.87 \mathrm{ms} \pm 13.4 \mathrm{μs}\left({\color{red}5.99 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_small

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 52 $$2.87 \mathrm{ms} \pm 11.5 \mathrm{μs}\left({\color{red}5.21 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.59 \mathrm{ms} \pm 10.9 \mathrm{μs}\left({\color{red}7.67 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 25 $$2.73 \mathrm{ms} \pm 11.5 \mathrm{μs}\left({\color{red}6.42 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 94 $$3.23 \mathrm{ms} \pm 15.6 \mathrm{μs}\left({\color{gray}4.70 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$2.83 \mathrm{ms} \pm 13.3 \mathrm{μs}\left({\color{red}7.19 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 26 $$3.02 \mathrm{ms} \pm 14.2 \mathrm{μs}\left({\color{red}5.24 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 66 $$3.10 \mathrm{ms} \pm 10.7 \mathrm{μs}\left({\color{gray}3.71 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.79 \mathrm{ms} \pm 14.4 \mathrm{μs}\left({\color{red}5.79 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 29 $$3.02 \mathrm{ms} \pm 16.8 \mathrm{μs}\left({\color{red}5.48 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_complete

Function Value Mean Flame graphs
entity_by_id;one_depth 1 entities $$38.9 \mathrm{ms} \pm 174 \mathrm{μs}\left({\color{gray}0.097 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 10 entities $$76.5 \mathrm{ms} \pm 462 \mathrm{μs}\left({\color{gray}0.280 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 25 entities $$43.8 \mathrm{ms} \pm 194 \mathrm{μs}\left({\color{gray}0.014 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 5 entities $$45.6 \mathrm{ms} \pm 194 \mathrm{μs}\left({\color{gray}-0.072 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 50 entities $$54.5 \mathrm{ms} \pm 330 \mathrm{μs}\left({\color{gray}3.77 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 1 entities $$40.6 \mathrm{ms} \pm 191 \mathrm{μs}\left({\color{gray}0.204 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 10 entities $$423 \mathrm{ms} \pm 928 \mathrm{μs}\left({\color{gray}2.02 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 25 entities $$91.3 \mathrm{ms} \pm 379 \mathrm{μs}\left({\color{gray}-3.420 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 5 entities $$84.2 \mathrm{ms} \pm 365 \mathrm{μs}\left({\color{gray}-1.495 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 50 entities $$261 \mathrm{ms} \pm 760 \mathrm{μs}\left({\color{lightgreen}-7.285 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 1 entities $$14.9 \mathrm{ms} \pm 69.7 \mathrm{μs}\left({\color{gray}1.02 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 10 entities $$15.0 \mathrm{ms} \pm 68.2 \mathrm{μs}\left({\color{gray}1.85 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 25 entities $$15.2 \mathrm{ms} \pm 68.1 \mathrm{μs}\left({\color{gray}1.72 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 5 entities $$14.8 \mathrm{ms} \pm 65.1 \mathrm{μs}\left({\color{gray}-0.852 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 50 entities $$17.9 \mathrm{ms} \pm 94.7 \mathrm{μs}\left({\color{gray}1.28 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_linkless

Function Value Mean Flame graphs
entity_by_id 1 entities $$14.5 \mathrm{ms} \pm 61.4 \mathrm{μs}\left({\color{gray}-2.670 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10 entities $$14.8 \mathrm{ms} \pm 69.5 \mathrm{μs}\left({\color{gray}0.984 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 100 entities $$14.8 \mathrm{ms} \pm 72.0 \mathrm{μs}\left({\color{gray}1.06 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 1000 entities $$15.3 \mathrm{ms} \pm 92.8 \mathrm{μs}\left({\color{gray}0.922 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10000 entities $$22.5 \mathrm{ms} \pm 164 \mathrm{μs}\left({\color{gray}-0.104 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity

Function Value Mean Flame graphs
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/block/v/1 $$29.5 \mathrm{ms} \pm 270 \mathrm{μs}\left({\color{gray}-0.587 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/book/v/1 $$30.0 \mathrm{ms} \pm 269 \mathrm{μs}\left({\color{gray}-0.503 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/building/v/1 $$29.1 \mathrm{ms} \pm 232 \mathrm{μs}\left({\color{gray}-2.532 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/organization/v/1 $$30.5 \mathrm{ms} \pm 300 \mathrm{μs}\left({\color{gray}3.19 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/page/v/2 $$29.5 \mathrm{ms} \pm 298 \mathrm{μs}\left({\color{gray}-2.340 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/person/v/1 $$29.6 \mathrm{ms} \pm 270 \mathrm{μs}\left({\color{gray}1.31 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/playlist/v/1 $$30.6 \mathrm{ms} \pm 234 \mathrm{μs}\left({\color{gray}0.532 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/song/v/1 $$30.3 \mathrm{ms} \pm 255 \mathrm{μs}\left({\color{gray}2.03 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/uk-address/v/1 $$29.3 \mathrm{ms} \pm 281 \mathrm{μs}\left({\color{gray}-1.408 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity_type

Function Value Mean Flame graphs
get_entity_type_by_id Account ID: bf5a9ef5-dc3b-43cf-a291-6210c0321eba $$8.10 \mathrm{ms} \pm 31.5 \mathrm{μs}\left({\color{gray}1.31 \mathrm{\%}}\right) $$ Flame Graph

representative_read_multiple_entities

Function Value Mean Flame graphs
entity_by_property traversal_paths=0 0 $$46.9 \mathrm{ms} \pm 233 \mathrm{μs}\left({\color{gray}-0.171 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$94.8 \mathrm{ms} \pm 349 \mathrm{μs}\left({\color{gray}0.545 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$53.0 \mathrm{ms} \pm 301 \mathrm{μs}\left({\color{gray}0.039 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$60.9 \mathrm{ms} \pm 344 \mathrm{μs}\left({\color{gray}0.526 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$69.1 \mathrm{ms} \pm 276 \mathrm{μs}\left({\color{gray}0.535 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$75.3 \mathrm{ms} \pm 395 \mathrm{μs}\left({\color{gray}-0.061 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=0 0 $$50.7 \mathrm{ms} \pm 249 \mathrm{μs}\left({\color{gray}0.503 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$77.9 \mathrm{ms} \pm 373 \mathrm{μs}\left({\color{gray}0.417 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$57.6 \mathrm{ms} \pm 274 \mathrm{μs}\left({\color{gray}0.531 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$65.3 \mathrm{ms} \pm 379 \mathrm{μs}\left({\color{gray}0.633 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$67.4 \mathrm{ms} \pm 340 \mathrm{μs}\left({\color{gray}0.249 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$67.3 \mathrm{ms} \pm 279 \mathrm{μs}\left({\color{gray}0.661 \mathrm{\%}}\right) $$

scenarios

Function Value Mean Flame graphs
full_test query-limited $$134 \mathrm{ms} \pm 506 \mathrm{μs}\left({\color{gray}2.52 \mathrm{\%}}\right) $$ Flame Graph
full_test query-unlimited $$130 \mathrm{ms} \pm 428 \mathrm{μs}\left({\color{gray}-1.861 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-limited $$40.3 \mathrm{ms} \pm 317 \mathrm{μs}\left({\color{lightgreen}-61.131 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-unlimited $$583 \mathrm{ms} \pm 993 \mathrm{μs}\left({\color{lightgreen}-5.863 \mathrm{\%}}\right) $$ Flame Graph

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

area/deps Relates to third-party dependencies (area) area/infra Relates to version control, CI, CD or IaC (area) area/libs Relates to first-party libraries/crates/packages (area) type/eng > backend Owned by the @backend team

Development

Successfully merging this pull request may close these issues.

3 participants