Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 83 additions & 0 deletions Homework.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
import pandas as pd
import statistics
import matplotlib.pyplot as plt
import numpy as np


food_consumption = pd.read_csv('/Users/Sansar/Desktop/DS Documents/MathStats-Module-Week16/food_consumption.csv', index_col=0)
print(food_consumption.head())
print()

#####################################################################################################################################

be_consumption = food_consumption[food_consumption['country'] == 'Belgium']

mn1 = statistics.mean(be_consumption['consumption'])
print(mn1)

md1 = statistics.median(be_consumption['consumption'])
print(md1)
print()

usa_consumption = food_consumption[food_consumption['country'] == 'USA']

mn2 = statistics.mean(usa_consumption['consumption'])
print(mn2)

md2 = statistics.median(usa_consumption['consumption'])
print(md2)
print()


#####################################################################################################################################

rice_consumption = food_consumption[food_consumption['food_category'] == 'rice']
plt.hist(food_consumption['co2_emission'], bins=30)
plt.show()
print()


#####################################################################################################################################

rice_consumption = food_consumption[food_consumption['food_category'] == 'rice']

rice_mean = statistics.mean(rice_consumption['co2_emission'])
rice_median = statistics.median(rice_consumption['co2_emission'])

df = pd.DataFrame(
{
"Mean" : [(rice_mean)], '| '
"Median" : [(rice_median)]
}
)

print(df)
print()

#####################################################################################################################################

co2_emission = food_consumption['co2_emission']
x = np.quantile(co2_emission, np.linspace(0, 1, 6))
print(x)
print()

#####################################################################################################################################

food_category = food_consumption['food_category']

co2_var = food_consumption.groupby('food_category')['co2_emission'].var()
co2_std = food_consumption.groupby('food_category')['co2_emission'].std()

data = {'co2_var': co2_var,
'co2_std': co2_std}

df = pd.DataFrame(data)
print(df)
print()

#####################################################################################################################################

co2_beef = food_consumption[food_consumption['food_category'] == 'beef']
plt.hist(food_consumption['co2_emission'], bins=30)
plt.show()
print()