Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
147 changes: 147 additions & 0 deletions Homework.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
import statistics
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np


food_consumption = pd.read_csv('food_consumption.csv', index_col=0)
# print(food_consumption.head(), ' \n')

#####################################################################################################################################

# be_consumption = food_consumption[food_consumption['country'] == 'Belgium']

# mn1 = statistics.mean(be_consumption['consumption'])
# print('Mean For Belgium: ', mn1, )

# md1 = statistics.median(be_consumption['consumption'])
# print('Median For Belgium: ', md1, ' \n')


# usa_consumption = food_consumption[food_consumption['country'] == 'USA']

# mn2 = statistics.mean(usa_consumption['consumption'])
# print('Mean For USA: ', mn2)

# md2 = statistics.median(usa_consumption['consumption'])
# print('Median For USA: ', md2, ' \n')



#####################################################################################################################################
# rice_consumption = food_consumption[food_consumption['food_category'] == 'rice']

# # Group the data by country and calculate the sum of CO2 emissions for each country
# armut=rice_consumption[["country","co2_emission"]]
# co2_emission_by_country = rice_consumption.groupby('country')['co2_emission'].sum().reset_index()

# # Find the country with the highest CO2 emissions
# most_co2_emission_country = co2_emission_by_country.loc[co2_emission_by_country['co2_emission'].idxmax()]['country']

# # Create the histogram
# # Create the histogram
# plt.hist(rice_consumption['co2_emission'], bins=130)

# # Add the title, xlabel, ylabel
# plt.xlabel("CO2 Emission (kg CO2 eq/kg food)")
# plt.ylabel("Frequency")
# plt.title("CO2 Emission of Rice Consumption")

# # Get the highest CO2 emission value
# max_co2_emission = co2_emission_by_country.loc[co2_emission_by_country['co2_emission'].idxmax()]['co2_emission']


# # Add the most CO2 Emission Country
# plt.text(x = max_co2_emission, y = max(plt.yticks()[0])*0.9,
# s = f"Country with highest CO2 emissions: {most_co2_emission_country}",
# fontsize = 10, color = 'blue',
# ha = 'center', va = 'center')
# plt.show()


# rice_consumption[["country","co2_emission"]].sort_values("co2_emission", ascending=False).to_json("co2_emission_of_rice_consumption_sorted.json", orient='index')


#####################################################################################################################################

# rice_consumption = food_consumption[food_consumption['food_category'] == 'rice']

# rice_mean = statistics.mean(rice_consumption['co2_emission'])
# rice_median = statistics.median(rice_consumption['co2_emission'])

# df = pd.DataFrame(
# {
# "Mean" : [(rice_mean)], '| '
# "Median" : [(rice_median)]
# }
# )

# print(df)
# print()

# #####################################################################################################################################

# co2_emission = food_consumption['co2_emission']
# sorted_data = food_consumption.sort_values("co2_emission", ascending=False).to_json("Quantile_sample.json", orient='index')

# print(sorted_data)

# x = np.quantile(co2_emission, np.linspace(0, 1, 6))
# # Quantile: bize veri gruplarinin belli bir orana bolunmesine ve bu oran grruplarinin en yuksek degerini vermesine yarar.

# print(x)
# print()

# #####################################################################################################################################

food_category = food_consumption['food_category']

# co2_var = food_consumption.groupby('food_category')['co2_emission'].var()
# # print(co2_var)
# co2_std = food_consumption.groupby('food_category')['co2_emission'].std()
# # print(co2_std)

# data = {'co2_var': co2_var,
# 'co2_std': co2_std}

# df = pd.DataFrame(data)
# print(df)
# print()

# df = food_consumption.groupby('food_category')['co2_emission'].agg(['var', 'std', 'max', 'min', 'mean', 'median', 'mad'])
# print(df)

# #####################################################################################################################################

co2_beef = food_consumption[food_consumption['food_category'] == 'beef']
plt.hist(co2_beef['co2_emission'], bins=30)
plt.show()
print()


# co2_beef = food_consumption[food_consumption['food_category'] == 'beef']
# co2_emissions = co2_beef['co2_emission']

# # Divide the emissions data into 4 quantiles
# co2_emissions_q = pd.qcut(co2_emissions, 30)

# # Use your custom labels
# labels = ['Q{}'.format(i) for i in range(1,31)]
# # plt.figure(figsize=(5,5))
# # plt.title("CO2 Emissions for Beef Consumption")
# # # Create a pie chart
# # plt.pie(co2_emissions_q.value_counts(), labels=labels, autopct='%1.1f%%')
# # plt.show()


# plt.figure(figsize=(5,5))
# plt.title("CO2 Emissions for Beef Consumption")

# plt.plot(labels, co2_emissions_q.value_counts(), marker='o', linestyle='--', color='b')

# # Create a line chart with emissions data on the y-axis and
# # quantile labels on the x-axis
# plt.plot(labels, co2_emissions_q.value_counts())
# plt.xlabel('Quantile')
# plt.ylabel('Emissions')
# plt.show()