Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
102 changes: 102 additions & 0 deletions summery_sat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
import pandas as pd
import matplotlib.pyplot as pt
import numpy as np
#read the data
#./dataset/ is a path. Copy and paste the path of the CSV file in your computer to read the data.
food_consumption = pd.read_csv('food_consumption.csv',index_col=0)

food_consumption.head(6)
# print(food_consumption.head(6))
be_consumption = food_consumption[food_consumption['country'] == 'Belgium']
# print(be_consumption)

# Q-1) Calculate mean and median consumption in Belgium

mean=be_consumption['consumption'].mean()
print(mean)
median=be_consumption['consumption'].median()
print(median)

# Q-2) Calculate mean and median consumption of USA

usa_consumption=food_consumption[food_consumption['country'] == 'USA']
# print(usa_consumption)
mean_usa=usa_consumption['consumption'].mean()
print(mean)
median_usa=usa_consumption['consumption'].median()
print(median_usa)

# Q-3) Group by country, select consumption column, and compute mean and median

usa_and_be=food_consumption[(food_consumption['country'] == 'Belgium')|(food_consumption['country'] == 'USA')]
print(usa_and_be)
t=usa_and_be.groupby('country')['consumption'].mean()
y=usa_and_be.groupby('country')['consumption'].median()
s=[t,y]

d=pd.concat(s,axis=1,join='inner',keys=["mean", "median"])
print(d)
rice_consumption = food_consumption[food_consumption['food_category'] == 'rice']
print(rice_consumption)

# Q-4)Plot the histogram of co2_emission for rice

rice_consumption["co2_emission"].diff().hist()
pt.show ()

# Q-5) Calculate mean and median of co2_emission with .agg()
ag1=rice_consumption.agg((['mean', 'median']))
print(ag1)

print(rice_consumption["co2_emission"].mean())
print(rice_consumption["co2_emission"].median())



# Q-6) Calculate the quintiles of co2_emission
print(np.quantile(food_consumption["co2_emission"], np.linspace(0, 1, 6)))

# Q-7) Calculate the variance and standard deviation of co2_emission
# for food_categories

food_consumption = pd.read_csv('food_consumption.csv',index_col=0)
print(food_consumption)
beef_cat=food_consumption[food_consumption['food_category'] == 'beef']

# beef_cat["co2_emission"].diff().hist()
# pt.show ()

print(beef_cat)
print(beef_cat['co2_emission'].mean())
print(food_consumption[food_consumption['food_category'] == 'beef']['co2_emission'].median())

n=['beef','dairy', 'eggs' ,'fish','lamb_goat','nuts','pork','poultry','rice','soybeans','wheat'
]
df1=[]
df2=[]
for i in n:

# df1[i]=food_consumption[food_consumption['food_category'] == i]['co2_emission'].var()
df1.append(food_consumption[food_consumption['food_category'] == i]['co2_emission'].var())
print(i,df1)
r1=pd.DataFrame(df1)
print(r1)
for i in n:

# df2[i]=food_consumption[food_consumption['food_category'] == i]['co2_emission'].std()
df2.append(food_consumption[food_consumption['food_category'] == i]['co2_emission'].std())
print(df2)
r2=pd.DataFrame(df2)
print(r2)
s={"food_category":n,"mean":df1,"std":df2}
s=pd.DataFrame(s)
print(s)

# Q-8) Create histogram of co2_emission for food_category 'beef'

beef_cat["co2_emission"].diff().hist()
pt.show ()