-
Notifications
You must be signed in to change notification settings - Fork 237
Add load_analyzer_from_nwb function
#4270
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -7,7 +7,14 @@ | |
| import numpy as np | ||
|
|
||
| from spikeinterface import get_global_tmp_folder | ||
| from spikeinterface.core import BaseRecording, BaseRecordingSegment, BaseSorting, BaseSortingSegment | ||
| from spikeinterface.core import ( | ||
| BaseRecording, | ||
| BaseRecordingSegment, | ||
| BaseSorting, | ||
| BaseSortingSegment, | ||
| SortingAnalyzer, | ||
| get_default_analyzer_extension_params, | ||
| ) | ||
| from spikeinterface.core.core_tools import define_function_from_class | ||
|
|
||
|
|
||
|
|
@@ -1259,6 +1266,7 @@ def _fetch_sorting_segment_info_backend( | |
|
|
||
| # need this for later | ||
| self.units_table = units_table | ||
| self._file = open_file | ||
|
|
||
| return unit_ids, spike_times_data, spike_times_index_data | ||
|
|
||
|
|
@@ -1789,3 +1797,280 @@ def read_nwb(file_path, load_recording=True, load_sorting=False, electrical_seri | |
| outputs = outputs[0] | ||
|
|
||
| return outputs | ||
|
|
||
|
|
||
| def load_analyzer_from_nwb( | ||
| file_path: str | Path, | ||
| t_start: float | None = None, | ||
| sampling_frequency: float | None = None, | ||
| electrical_series_path: str | None = None, | ||
| unit_table_path: str | None = None, | ||
| stream_mode: Literal["fsspec", "remfile", "zarr"] | None = None, | ||
| stream_cache_path: str | Path | None = None, | ||
| cache: bool = False, | ||
| storage_options: dict | None = None, | ||
| use_pynwb: bool = False, | ||
| group_name: str | None = None, | ||
| compute_extra: List[str] | None = ["unit_locations", "correlograms"], | ||
| compute_extra_params: dict | None = None, | ||
| verbose: bool = False, | ||
| ) -> SortingAnalyzer: | ||
| import pandas as pd | ||
| from spikeinterface.metrics.template import ComputeTemplateMetrics | ||
| from spikeinterface.metrics.quality import ComputeQualityMetrics | ||
|
|
||
| # try to read recording object to get the analyzer | ||
| try: | ||
| recording = NwbRecordingExtractor( | ||
| file_path=file_path, | ||
| electrical_series_path=electrical_series_path, | ||
| stream_mode=stream_mode, | ||
| stream_cache_path=stream_cache_path, | ||
| cache=cache, | ||
| storage_options=storage_options, | ||
| use_pynwb=use_pynwb, | ||
| ) | ||
| except Exception: | ||
| if verbose: | ||
| print("Could not load recording, proceeding without it") | ||
| recording = None | ||
|
|
||
| t_start_tmp = 0 if t_start is None else t_start | ||
|
|
||
| sorting_tmp = NwbSortingExtractor( | ||
| file_path=file_path, | ||
| electrical_series_path=electrical_series_path, | ||
| unit_table_path=unit_table_path, | ||
| stream_mode=stream_mode, | ||
| stream_cache_path=stream_cache_path, | ||
| cache=cache, | ||
| storage_options=storage_options, | ||
| use_pynwb=use_pynwb, | ||
| t_start=t_start_tmp, | ||
| sampling_frequency=sampling_frequency, | ||
| ) | ||
|
Comment on lines
+1838
to
+1851
Member
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. We could use |
||
|
|
||
| if recording is None and t_start is None: | ||
| # re-estimate t_start from spike times | ||
| if verbose: | ||
| print("Re-estimating t_start from spike_times") | ||
| t_start_new = np.min(sorting_tmp._sorting_segments[0].spike_times_data) - 0.001 | ||
| if verbose: | ||
| print(f"Found new t_start: {t_start_new} s") | ||
| sorting = NwbSortingExtractor( | ||
| file_path=file_path, | ||
| electrical_series_path=electrical_series_path, | ||
| unit_table_path=unit_table_path, | ||
| stream_mode=stream_mode, | ||
| stream_cache_path=stream_cache_path, | ||
| cache=cache, | ||
| storage_options=storage_options, | ||
| use_pynwb=use_pynwb, | ||
| t_start=t_start_new, | ||
| sampling_frequency=sampling_frequency, | ||
| ) | ||
| else: | ||
| sorting = sorting_tmp | ||
|
|
||
| if use_pynwb: | ||
| units = sorting.units_table | ||
| colnames = units.colnames | ||
| units = units.to_dataframe(index=True) | ||
| else: | ||
| units_dset = sorting._file["units"] | ||
| units = make_df(units_dset) | ||
| colnames = units.columns | ||
|
|
||
| electrodes_indices = None | ||
| if use_pynwb: | ||
| electrodes_table = sorting._nwbfile.electrodes.to_dataframe(index=True) | ||
| if "electrodes" in colnames: | ||
| electrodes_indices = units["electrodes"] | ||
| else: | ||
| electrodes_table = make_df(sorting._file["/general/extracellular_ephys/electrodes"]) | ||
| if "electrodes" in colnames: | ||
| electrodes_indices = electrodes_indices = units["electrodes"][:] | ||
|
|
||
| if electrodes_indices is not None: | ||
| # here we assume all groups are the same for each unit, so we just check one. | ||
| if "group_name" in electrodes_table.columns: | ||
| group_names = np.array([electrodes_table.iloc[int(ei[0])]["group_name"] for ei in electrodes_indices]) | ||
| if len(np.unique(group_names)) > 0: | ||
| if group_name is None: | ||
| raise Exception( | ||
| f"More than one group, use group_name option to select units. Available groups: {np.unique(group_names)}" | ||
| ) | ||
| else: | ||
| unit_mask = group_names == group_name | ||
| if verbose: | ||
| print(f"Selecting {sum(unit_mask)} / {len(units)} units from {group_name}") | ||
| sorting = sorting.select_units(unit_ids=sorting.unit_ids[unit_mask]) | ||
| units = units.loc[units.index[unit_mask]] | ||
| electrodes_indices = units["electrodes"] | ||
|
Comment on lines
+1894
to
+1909
Member
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. we could use the same trick as the "aggregation_key" when instantiating a sorting analyzer from grouped recordings/sortings |
||
|
|
||
| # TODO: figure out sparsity | ||
|
|
||
| # handle recording if available | ||
| if recording is not None: | ||
| # check groups | ||
| group_names = np.unique(recording.get_channel_groups()) | ||
| if group_name is not None and len(group_names) > 1: | ||
| recording = recording.split_by("group")[group_name] | ||
| rec_attributes = None | ||
| else: | ||
| recording = None | ||
| rec_attributes = {} | ||
|
|
||
| # get sliced electrodes table from electrode_indices union | ||
| electrode_indices_all = [] | ||
| for ei in electrodes_indices: | ||
| electrode_indices_all.extend(ei) | ||
| electrode_indices_all = np.sort(np.unique(electrode_indices_all)) | ||
| if verbose: | ||
| print(f"Found {len(electrode_indices_all)} electrodes") | ||
| electrodes_table_sliced = electrodes_table.iloc[electrode_indices_all] | ||
| if "channel_name" in electrodes_table_sliced: | ||
| channel_ids = electrodes_table_sliced["channel_name"][:] | ||
| else: | ||
| channel_ids = electrodes_table_sliced["id"][:] | ||
| num_samples = [sorting.to_spike_vector()[-1]["sample_index"]] | ||
| rec_attributes = dict( | ||
| channel_ids=channel_ids, | ||
| sampling_frequency=sorting.sampling_frequency, | ||
| num_channels=len(channel_ids), | ||
| num_samples=num_samples, | ||
| is_filtered=True, | ||
| dtype="float32", | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. why do we need the dtype and why is it fixed?
Member
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think we should make this optional at the Analyzer level (same for is_filtered) |
||
| ) | ||
| # make a probegroup | ||
| electrode_colnames = electrodes_table_sliced.columns | ||
| assert ( | ||
| "rel_x" in electrode_colnames and "rel_y" in electrode_colnames | ||
| ), "'rel_x' and 'rel_y' should be columns in the electrode name" | ||
| locations = np.array([electrodes_table_sliced["rel_x"][:], electrodes_table_sliced["rel_y"][:]]).T | ||
| probegroup = create_dummy_probegroup_from_locations(locations) | ||
| rec_attributes["probegroup"] = probegroup | ||
|
|
||
| # instantiate analyzer | ||
| analyzer = SortingAnalyzer.create_memory( | ||
| sorting=sorting, recording=recording, sparsity=None, rec_attributes=rec_attributes, return_in_uV=True | ||
| ) | ||
|
|
||
| # templates | ||
| if "waveform_mean" in units: | ||
| from spikeinterface.core.analyzer_extension_core import ComputeTemplates, ComputeRandomSpikes | ||
|
|
||
| # instantiate templates | ||
| analyzer.compute("random_spikes", method="all") | ||
|
|
||
| templates_ext = ComputeTemplates(sorting_analyzer=analyzer) | ||
| templates_avg_data = np.array([t for t in units["waveform_mean"].values]).astype("float") | ||
| total_ms = templates_avg_data.shape[1] / analyzer.sampling_frequency * 1000 | ||
| template_params = get_default_analyzer_extension_params("templates") | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think this is a strange guess.
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is there a proper way to do it ? |
||
| if total_ms != template_params["ms_before"] + template_params["ms_after"]: | ||
| if verbose: | ||
| print("Guessing correct template cutouts") | ||
| template_params["ms_before"] = int(1 / 3 * total_ms) | ||
| template_params["ms_after"] = total_ms - template_params["ms_before"] | ||
| template_params["operators"] = ["average", "std"] | ||
| templates_ext.set_params(**template_params) | ||
| templates_avg_data = np.array([t for t in units["waveform_mean"].values]).astype("float") | ||
| templates_ext.data["average"] = templates_avg_data | ||
| if "waveforms_sd" in units: | ||
| templates_std_data = np.array([t for t in units["waveform_sd"].values]).astype("float") | ||
| else: | ||
| templates_std_data = np.zeros_like(templates_avg_data) | ||
| templates_ext.data["std"] = templates_std_data | ||
| templates_ext.run_info["run_completed"] = True | ||
|
|
||
| analyzer.extensions["templates"] = templates_ext | ||
|
|
||
| template_metric_columns = ComputeTemplateMetrics.get_metric_columns() | ||
| quality_metric_columns = ComputeQualityMetrics.get_metric_columns() | ||
|
|
||
| tm = pd.DataFrame(index=sorting.unit_ids) | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. what is tm? |
||
| qm = pd.DataFrame(index=sorting.unit_ids) | ||
|
Comment on lines
+1991
to
+1992
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can we set the correct dtype from the new extension system ? |
||
|
|
||
| for col in units.columns: | ||
| if col in template_metric_columns: | ||
| tm.loc[:, col] = units[col].values | ||
| if col in quality_metric_columns: | ||
| qm.loc[:, col] = units[col].values | ||
|
|
||
| if len(tm.columns) > 0: | ||
| if verbose: | ||
| print("Adding template metrics") | ||
| tm_ext = ComputeTemplateMetrics(analyzer) | ||
| tm_ext.data["metrics"] = tm | ||
| tm_ext.run_info["run_completed"] = True | ||
| analyzer.extensions["template_metrics"] = tm_ext | ||
| if len(qm.columns) > 0: | ||
| if verbose: | ||
| print("Adding quality metrics") | ||
| qm_ext = ComputeQualityMetrics(analyzer) | ||
| qm_ext.data["metrics"] = qm | ||
| qm_ext.run_info["run_completed"] = True | ||
| analyzer.extensions["quality_metrics"] = qm_ext | ||
|
|
||
| # compute extra required | ||
| if compute_extra is not None: | ||
| if verbose: | ||
| print(f"Computing extra extensions: {compute_extra}") | ||
| compute_extra_params = {} if compute_extra_params is None else compute_extra_params | ||
| analyzer.compute(compute_extra, **compute_extra_params) | ||
|
|
||
| return analyzer | ||
|
|
||
|
|
||
| def create_dummy_probegroup_from_locations(locations, shape="circle", shape_params={"radius": 1}): | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. we should make this private as we might want to change this. |
||
| """ | ||
| Creates a "dummy" probe based on locations. | ||
|
|
||
| Parameters | ||
| ---------- | ||
| locations : np.array | ||
| Array with channel locations (num_channels, ndim) [ndim can be 2 or 3] | ||
| shape : str, default: "circle" | ||
| Electrode shapes | ||
| shape_params : dict, default: {"radius": 1} | ||
| Shape parameters | ||
|
|
||
| Returns | ||
| ------- | ||
| probe : Probe | ||
| The created probe | ||
| """ | ||
| from probeinterface import Probe, ProbeGroup | ||
|
|
||
| ndim = locations.shape[1] | ||
| assert ndim == 2 | ||
| probe = Probe(ndim=2) | ||
| probe.set_contacts(locations, shapes=shape, shape_params=shape_params) | ||
| probe.set_device_channel_indices(np.arange(len(probe.contact_positions))) | ||
| probe.create_auto_shape() | ||
| probegroup = ProbeGroup() | ||
| probegroup.add_probe(probe) | ||
|
|
||
| return probegroup | ||
|
|
||
|
|
||
| def make_df(group): | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. we should make this private as we might want to change this. Plus, this is a super generic name that we don't want to contaminate any namespace with. |
||
| """Makes pandas DataFrame from hdf5/zarr NWB group""" | ||
| import pandas as pd | ||
|
|
||
| colnames = list(group.keys()) | ||
| data = {} | ||
| for col in colnames: | ||
| if "_index" in col: | ||
| continue | ||
| item = group[col][:] | ||
| if f"{col}_index" in colnames: | ||
| item = np.split(item, group[f"{col}_index"][:])[:-1] | ||
| data[col] = item | ||
| elif item.ndim > 1: | ||
| data[col] = [item_flat for item_flat in item] | ||
| else: | ||
| data[col] = item | ||
| df = pd.DataFrame(data=data) | ||
| df.set_index("id", inplace=True) | ||
| return df | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
you don't like the name read_nwb_as_analyzer() ? to match the kilosort one.