diff --git a/homwork.ipynb b/homwork.ipynb
new file mode 100644
index 0000000..3bc6056
--- /dev/null
+++ b/homwork.ipynb
@@ -0,0 +1,339 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import math\n",
+ "import statistics\n",
+ "import numpy as np\n",
+ "import scipy.stats\n",
+ "import pandas as pd\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " country | \n",
+ " food_category | \n",
+ " consumption | \n",
+ " co2_emission | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1 | \n",
+ " Argentina | \n",
+ " pork | \n",
+ " 10.51 | \n",
+ " 37.20 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " Argentina | \n",
+ " poultry | \n",
+ " 38.66 | \n",
+ " 41.53 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " Argentina | \n",
+ " beef | \n",
+ " 55.48 | \n",
+ " 1712.00 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " Argentina | \n",
+ " lamb_goat | \n",
+ " 1.56 | \n",
+ " 54.63 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " Argentina | \n",
+ " fish | \n",
+ " 4.36 | \n",
+ " 6.96 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " country food_category consumption co2_emission\n",
+ "1 Argentina pork 10.51 37.20\n",
+ "2 Argentina poultry 38.66 41.53\n",
+ "3 Argentina beef 55.48 1712.00\n",
+ "4 Argentina lamb_goat 1.56 54.63\n",
+ "5 Argentina fish 4.36 6.96"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#read the data\n",
+ "#./dataset/ is a path. Copy and paste the path of the CSV file in your computer to read the data. \n",
+ "food_consumption = pd.read_csv('D:/codes/Class7-MathStats-Module-Week16/food_consumption.csv', index_col=0)\n",
+ "food_consumption.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#filter for Belgium\n",
+ "be_consumption = food_consumption[food_consumption['country'] == 'Belgium']\n",
+ "\n",
+ "# Filter for USA\n",
+ "usa_consumption = food_consumption[food_consumption['country'] == 'USA']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "42.13272727272727\n",
+ "12.59\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Q-1) Calculate mean and median consumption in Belgium\n",
+ "\n",
+ "print(be_consumption['consumption'].mean())\n",
+ "print(be_consumption['consumption'].median())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "44.650000000000006\n",
+ "14.58\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Q-2) Calculate mean and median consumption of USA\n",
+ "print(usa_consumption['consumption'].mean())\n",
+ "print(usa_consumption['consumption'].median())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Work with both countries together\n",
+ "be_and_usa = food_consumption[(food_consumption['country'] == 'Belgium') | \n",
+ " (food_consumption['country'] == 'USA')]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " mean median\n",
+ "country \n",
+ "Belgium 42.132727 12.59\n",
+ "USA 44.650000 14.58\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Q-3) Group by country, select consumption column, and compute mean and median\n",
+ "print(be_and_usa.groupby('country')['consumption'].agg([np.mean, np.median]))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGeCAYAAAA0WWMxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAn1UlEQVR4nO3dfXBU53n+8WsFqxUyrBTxopViAXKKDQYDDTawsdvaoBczhEDROLahE5kwpo1lEklJXKtjQPCzy0umQEkF1B0q7JnKdmgLKU4MlkWQh1rCgKE1ditDhhhi2GWMLS2gaFlLz++PjLYRkkGLVo9W2u9n5ow4zzn77H106+Xi7FkdhzHGCAAAwJKEvi4AAADEF8IHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwKrBfV3A9dra2nT+/HkNGzZMDoejr8sBAADdYIzR5cuXlZmZqYSEm5zbMBH44osvzHPPPWfGjh1rkpKSzB133GHWrFlj2trawvu0tbWZFStWGI/HY5KSkszs2bPNRx991O3nOHfunJHEwsLCwsLC0g+Xc+fO3fR3fURnPtavX69t27bppZde0sSJE3X06FEtWbJEKSkp+v73vy9J2rBhg7Zs2aKXXnpJ2dnZWrFihfLz8/Xhhx8qKSnpps8xbNgwSdK5c+fkdrsjKa9LoVBIb775pvLy8uR0Ons8H6KL/sQuehO76E3siufeBAIBZWVlhX+P30hE4eOdd97R/PnzNXfuXEnS2LFj9corr+jdd9+VJBljtHnzZj333HOaP3++JOnll19Wenq69uzZo8cee+ymz9H+Uovb7Y5a+EhOTpbb7Y67L4T+gP7ELnoTu+hN7KI36tYlExGFj2984xt68cUX9dFHH+nOO+/Uf/3Xf+nQoUPauHGjJOnMmTPy+XzKyckJPyYlJUUzZsxQXV1dl+EjGAwqGAyG1wOBgKTfNzAUCkVSXpfa54jGXIg++hO76E3sojexK557E8kxRxQ+nn32WQUCAY0fP16DBg1Sa2urXnjhBS1evFiS5PP5JEnp6ekdHpeenh7edr21a9dq9erVncbffPNNJScnR1LeDVVXV0dtLkQf/Yld9CZ20ZvYFY+9aW5u7va+EYWPn/3sZ/qXf/kXVVVVaeLEiTpx4oSKi4uVmZmpwsLCiAuVpLKyMpWWlobX218zysvLi9rLLtXV1crNzY3bU2CxjP7ELnoTu+hN7Irn3rS/ctEdEYWPH//4x3r22WfDL5/cc889+vjjj7V27VoVFhbK4/FIkvx+vzIyMsKP8/v9mjp1apdzulwuuVyuTuNOpzOqjYv2fIgu+hO76E3sojexKx57E8nxRvRHxpqbmzu9d3fQoEFqa2uTJGVnZ8vj8aimpia8PRAI6PDhw/J6vZE8FQAAGKAiOvMxb948vfDCCxo9erQmTpyo48ePa+PGjfrud78r6fdXuBYXF+v555/XuHHjwm+1zczM1IIFC3qjfgAA0M9EFD5++tOfasWKFXrqqad08eJFZWZm6i//8i+1cuXK8D7PPPOMrl69qmXLlqmxsVEPPPCA9u3b162/8QEAAAa+iMLHsGHDtHnzZm3evPlL93E4HFqzZo3WrFnT09oAAMAAxI3lAACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGBVRG+1HQjGPvuLvi4hYr9ZN7evSwAAIGo48wEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsCqi8DF27Fg5HI5OS1FRkSSppaVFRUVFGj58uIYOHaqCggL5/f5eKRwAAPRPEYWPI0eO6MKFC+GlurpakvTII49IkkpKSrR3717t2rVLtbW1On/+vBYuXBj9qgEAQL81OJKdR44c2WF93bp1+trXvqY/+7M/U1NTk3bs2KGqqirNmjVLklRZWakJEyaovr5eM2fO7HLOYDCoYDAYXg8EApKkUCikUCgU0cF0pX2O9o+uQabHc9oWjc9DrLq+P4gd9CZ20ZvYFc+9ieSYHcaYW/ptfO3aNWVmZqq0tFR/8zd/owMHDmj27Nn6/PPPlZqaGt5vzJgxKi4uVklJSZfzlJeXa/Xq1Z3Gq6qqlJycfCulAQAAy5qbm7Vo0SI1NTXJ7XbfcN+Iznz8oT179qixsVFPPPGEJMnn8ykxMbFD8JCk9PR0+Xy+L52nrKxMpaWl4fVAIKCsrCzl5eXdtPjuCIVCqq6uVm5urpxOpyaV7+/xnLadLM/v6xJ6zfX9QeygN7GL3sSueO5N+ysX3XHL4WPHjh2aM2eOMjMzb3UKSZLL5ZLL5eo07nQ6o9q49vmCrY6ozWlLPHwBR7vfiB56E7voTeyKx95Ecry3FD4+/vhjvfXWW/r3f//38JjH49G1a9fU2NjY4eyH3++Xx+O5lacBAAAD0C39nY/KykqNGjVKc+fODY9NmzZNTqdTNTU14bGGhgadPXtWXq+355UCAIABIeIzH21tbaqsrFRhYaEGD/6/h6ekpGjp0qUqLS1VWlqa3G63li9fLq/X+6XvdAEAAPEn4vDx1ltv6ezZs/rud7/badumTZuUkJCggoICBYNB5efna+vWrVEpFAAADAwRh4+8vDx92btzk5KSVFFRoYqKih4XBgAABibu7QIAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrIg4fn3zyif7iL/5Cw4cP15AhQ3TPPffo6NGj4e3GGK1cuVIZGRkaMmSIcnJydOrUqagWDQAA+q+Iwsfnn3+u+++/X06nU2+88YY+/PBD/d3f/Z2+8pWvhPfZsGGDtmzZou3bt+vw4cO67bbblJ+fr5aWlqgXDwAA+p/Bkey8fv16ZWVlqbKyMjyWnZ0d/rcxRps3b9Zzzz2n+fPnS5Jefvllpaena8+ePXrssceiVDYAAOivIgof//Ef/6H8/Hw98sgjqq2t1Ve/+lU99dRTevLJJyVJZ86ckc/nU05OTvgxKSkpmjFjhurq6roMH8FgUMFgMLweCAQkSaFQSKFQ6JYO6g+1z9H+0TXI9HhO26LxeYhV1/cHsYPexC56E7viuTeRHLPDGNPt38ZJSUmSpNLSUj3yyCM6cuSIfvCDH2j79u0qLCzUO++8o/vvv1/nz59XRkZG+HHf/va35XA49Nprr3Was7y8XKtXr+40XlVVpeTk5G4fCAAA6DvNzc1atGiRmpqa5Ha7b7hvROEjMTFR9957r955553w2Pe//30dOXJEdXV1txQ+ujrzkZWVpU8//fSmxXdHKBRSdXW1cnNz5XQ6Nal8f4/ntO1keX5fl9Brru8PYge9iV30JnbFc28CgYBGjBjRrfAR0csuGRkZuvvuuzuMTZgwQf/2b/8mSfJ4PJIkv9/fIXz4/X5NnTq1yzldLpdcLlencafTGdXGtc8XbHVEbU5b4uELONr9RvTQm9hFb2JXPPYmkuON6N0u999/vxoaGjqMffTRRxozZoyk31986vF4VFNTE94eCAR0+PBheb3eSJ4KAAAMUBGd+SgpKdE3vvEN/e3f/q2+/e1v691339WLL76oF198UZLkcDhUXFys559/XuPGjVN2drZWrFihzMxMLViwoDfqBwAA/UxE4eO+++7T7t27VVZWpjVr1ig7O1ubN2/W4sWLw/s888wzunr1qpYtW6bGxkY98MAD2rdvX/hiVQAAEN8iCh+S9M1vflPf/OY3v3S7w+HQmjVrtGbNmh4VBgAABibu7QIAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMCqiMJHeXm5HA5Hh2X8+PHh7S0tLSoqKtLw4cM1dOhQFRQUyO/3R71oAADQf0V85mPixIm6cOFCeDl06FB4W0lJifbu3atdu3aptrZW58+f18KFC6NaMAAA6N8GR/yAwYPl8Xg6jTc1NWnHjh2qqqrSrFmzJEmVlZWaMGGC6uvrNXPmzJ5XCwAA+r2Iw8epU6eUmZmppKQkeb1erV27VqNHj9axY8cUCoWUk5MT3nf8+PEaPXq06urqvjR8BINBBYPB8HogEJAkhUIhhUKhSMvrpH2O9o+uQabHc9oWjc9DrLq+P4gd9CZ20ZvYFc+9ieSYHcaYbv82fuONN3TlyhXdddddunDhglavXq1PPvlEJ0+e1N69e7VkyZIOQUKSpk+froceekjr16/vcs7y8nKtXr2603hVVZWSk5O7fSAAAKDvNDc3a9GiRWpqapLb7b7hvhGFj+s1NjZqzJgx2rhxo4YMGXJL4aOrMx9ZWVn69NNPb1p8d4RCIVVXVys3N1dOp1OTyvf3eE7bTpbn93UJveb6/iB20JvYRW9iVzz3JhAIaMSIEd0KHxG/7PKHUlNTdeedd+r06dPKzc3VtWvX1NjYqNTU1PA+fr+/y2tE2rlcLrlcrk7jTqczqo1rny/Y6ojanLbEwxdwtPuN6KE3sYvexK547E0kx9ujv/Nx5coV/frXv1ZGRoamTZsmp9Opmpqa8PaGhgadPXtWXq+3J08DAAAGkIjOfPzoRz/SvHnzNGbMGJ0/f16rVq3SoEGD9PjjjyslJUVLly5VaWmp0tLS5Ha7tXz5cnm9Xt7pAgAAwiIKH7/97W/1+OOP69KlSxo5cqQeeOAB1dfXa+TIkZKkTZs2KSEhQQUFBQoGg8rPz9fWrVt7pXAAANA/RRQ+Xn311RtuT0pKUkVFhSoqKnpUFAAAGLi4twsAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrehQ+1q1bJ4fDoeLi4vBYS0uLioqKNHz4cA0dOlQFBQXy+/09rRMAAAwQtxw+jhw5on/8x3/U5MmTO4yXlJRo79692rVrl2pra3X+/HktXLiwx4UCAICBYfCtPOjKlStavHix/umf/knPP/98eLypqUk7duxQVVWVZs2aJUmqrKzUhAkTVF9fr5kzZ3aaKxgMKhgMhtcDgYAkKRQKKRQK3Up5HbTP0f7RNcj0eE7bovF5iFXX9wexg97ELnoTu+K5N5Ecs8MYE/Fv48LCQqWlpWnTpk168MEHNXXqVG3evFkHDhzQ7Nmz9fnnnys1NTW8/5gxY1RcXKySkpJOc5WXl2v16tWdxquqqpScnBxpaQAAoA80Nzdr0aJFampqktvtvuG+EZ/5ePXVV/Xee+/pyJEjnbb5fD4lJiZ2CB6SlJ6eLp/P1+V8ZWVlKi0tDa8HAgFlZWUpLy/vpsV3RygUUnV1tXJzc+V0OjWpfH+P57TtZHl+X5fQa67vD2IHvYld9CZ2xXNv2l+56I6Iwse5c+f0gx/8QNXV1UpKSoq4sK64XC65XK5O406nM6qNa58v2OqI2py2xMMXcLT7jeihN7GL3sSueOxNJMcb0QWnx44d08WLF/X1r39dgwcP1uDBg1VbW6stW7Zo8ODBSk9P17Vr19TY2NjhcX6/Xx6PJ5KnAgAAA1REZz5mz56t999/v8PYkiVLNH78eP31X/+1srKy5HQ6VVNTo4KCAklSQ0ODzp49K6/XG72qAQBAvxVR+Bg2bJgmTZrUYey2227T8OHDw+NLly5VaWmp0tLS5Ha7tXz5cnm93i7f6QIAAOLPLb3V9kY2bdqkhIQEFRQUKBgMKj8/X1u3bo320wAAgH6qx+Hj4MGDHdaTkpJUUVGhioqKnk4NAAAGIO7tAgAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwKqIwse2bds0efJkud1uud1ueb1evfHGG+HtLS0tKioq0vDhwzV06FAVFBTI7/dHvWgAANB/RRQ+br/9dq1bt07Hjh3T0aNHNWvWLM2fP18ffPCBJKmkpER79+7Vrl27VFtbq/Pnz2vhwoW9UjgAAOifBkey87x58zqsv/DCC9q2bZvq6+t1++23a8eOHaqqqtKsWbMkSZWVlZowYYLq6+s1c+bMLucMBoMKBoPh9UAgIEkKhUIKhUIRHUxX2udo/+gaZHo8p23R+DzEquv7g9hBb2IXvYld8dybSI7ZYYy5pd/Gra2t2rVrlwoLC3X8+HH5fD7Nnj1bn3/+uVJTU8P7jRkzRsXFxSopKelynvLycq1evbrTeFVVlZKTk2+lNAAAYFlzc7MWLVqkpqYmud3uG+4b0ZkPSXr//ffl9XrV0tKioUOHavfu3br77rt14sQJJSYmdggekpSeni6fz/el85WVlam0tDS8HggElJWVpby8vJsW3x2hUEjV1dXKzc2V0+nUpPL9PZ7TtpPl+X1dQq+5vj+IHfQmdtGb2BXPvWl/5aI7Ig4fd911l06cOKGmpib967/+qwoLC1VbWxvpNGEul0sul6vTuNPpjGrj2ucLtjqiNqct8fAFHO1+I3roTeyiN7ErHnsTyfFGHD4SExP1R3/0R5KkadOm6ciRI/r7v/97Pfroo7p27ZoaGxs7nP3w+/3yeDyRPg0AABigevx3Ptra2hQMBjVt2jQ5nU7V1NSEtzU0NOjs2bPyer09fRoAADBARHTmo6ysTHPmzNHo0aN1+fJlVVVV6eDBg9q/f79SUlK0dOlSlZaWKi0tTW63W8uXL5fX6/3Sd7oAAID4E1H4uHjxor7zne/owoULSklJ0eTJk7V//37l5uZKkjZt2qSEhAQVFBQoGAwqPz9fW7du7ZXCAQBA/xRR+NixY8cNtyclJamiokIVFRU9KgoAAAxc3NsFAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVkUUPtauXav77rtPw4YN06hRo7RgwQI1NDR02KelpUVFRUUaPny4hg4dqoKCAvn9/qgWDQAA+q+Iwkdtba2KiopUX1+v6upqhUIh5eXl6erVq+F9SkpKtHfvXu3atUu1tbU6f/68Fi5cGPXCAQBA/zQ4kp337dvXYX3nzp0aNWqUjh07pj/90z9VU1OTduzYoaqqKs2aNUuSVFlZqQkTJqi+vl4zZ86MXuUAAKBfiih8XK+pqUmSlJaWJkk6duyYQqGQcnJywvuMHz9eo0ePVl1dXZfhIxgMKhgMhtcDgYAkKRQKKRQK9aS88Dx/+NE1yPR4Ttui8XmIVdf3B7GD3sQuehO74rk3kRyzwxhzS7+N29ra9K1vfUuNjY06dOiQJKmqqkpLlizpECYkafr06XrooYe0fv36TvOUl5dr9erVncarqqqUnJx8K6UBAADLmpubtWjRIjU1Ncntdt9w31s+81FUVKSTJ0+Gg8etKisrU2lpaXg9EAgoKytLeXl5Ny2+O0KhkKqrq5Wbmyun06lJ5ft7PKdtJ8vz+7qEXnN9fxA76E3sojexK5570/7KRXfcUvh4+umn9frrr+vtt9/W7bffHh73eDy6du2aGhsblZqaGh73+/3yeDxdzuVyueRyuTqNO53OqDaufb5gqyNqc9oSD1/A0e43oofexC56E7visTeRHG9E73Yxxujpp5/W7t27deDAAWVnZ3fYPm3aNDmdTtXU1ITHGhoadPbsWXm93kieCgAADFARnfkoKipSVVWVfv7zn2vYsGHy+XySpJSUFA0ZMkQpKSlaunSpSktLlZaWJrfbreXLl8vr9fJOFwAAICnC8LFt2zZJ0oMPPthhvLKyUk888YQkadOmTUpISFBBQYGCwaDy8/O1devWqBQLAAD6v4jCR3feGJOUlKSKigpVVFTcclEAAGDg4t4uAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArIro3i7oG2Of/UVflxCx36yb29clAABiFGc+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVdzVFr2iu3fidQ0y2jBdmlS+X8FWRy9XdWPciRcA7ODMBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALAq4vDx9ttva968ecrMzJTD4dCePXs6bDfGaOXKlcrIyNCQIUOUk5OjU6dORateAADQz0UcPq5evaopU6aooqKiy+0bNmzQli1btH37dh0+fFi33Xab8vPz1dLS0uNiAQBA/xfxvV3mzJmjOXPmdLnNGKPNmzfrueee0/z58yVJL7/8stLT07Vnzx499thjPasWAAD0e1G9sdyZM2fk8/mUk5MTHktJSdGMGTNUV1fXZfgIBoMKBoPh9UAgIEkKhUIKhUI9rql9jvaPrkGmx3MielwJpsPHvhSNr7eB5PrvHcQOehO74rk3kRxzVMOHz+eTJKWnp3cYT09PD2+73tq1a7V69epO42+++aaSk5OjVlt1dbUkacP0qE2JKPp/97b1dQn65S9/2dclxKT27x3EHnoTu+KxN83Nzd3eN6rh41aUlZWptLQ0vB4IBJSVlaW8vDy53e4ezx8KhVRdXa3c3Fw5nU5NKt/f4zkRPa4Eo/93b5tWHE1QsM3Rp7WcLM/v0+ePNdd/7yB20JvYFc+9aX/lojuiGj48Ho8kye/3KyMjIzzu9/s1derULh/jcrnkcrk6jTudzqg2rn2+YGvf/oJD14Jtjj7vTbz9oOiuaH8vInroTeyKx95EcrxR/Tsf2dnZ8ng8qqmpCY8FAgEdPnxYXq83mk8FAAD6qYjPfFy5ckWnT58Or585c0YnTpxQWlqaRo8ereLiYj3//PMaN26csrOztWLFCmVmZmrBggXRrBsAAPRTEYePo0eP6qGHHgqvt1+vUVhYqJ07d+qZZ57R1atXtWzZMjU2NuqBBx7Qvn37lJSUFL2qAQBAvxVx+HjwwQdlzJe/LdLhcGjNmjVas2ZNjwoDAAADE/d2AQAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYFXE93YBBqqxz/6ir0uI2G/Wze3rEgAgYpz5AAAAVhE+AACAVYQPAABgFdd8AP1Yb16n4hpktGG6NKl8v4Ktjl57nv6Aa2uA6OLMBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCKv3AKADcRa3c87u5fn+UvsyJWceYDAABYRfgAAABWET4AAIBVXPMBAANUrF2r0h398TqVP/w895e7Qff155kzHwAAwCrCBwAAsIrwAQAArCJ8AAAAq7jgFAAQM/rjRbKIXK+d+aioqNDYsWOVlJSkGTNm6N133+2tpwIAAP1Ir4SP1157TaWlpVq1apXee+89TZkyRfn5+bp48WJvPB0AAOhHeuVll40bN+rJJ5/UkiVLJEnbt2/XL37xC/3zP/+znn322Q77BoNBBYPB8HpTU5Mk6bPPPlMoFOpxLaFQSM3Nzbp06ZKcTqcGf3G1x3Miega3GTU3t2lwKEGtbbH7nvh4RG9iF72JXf2lN5cuXYr6nJcvX5YkGWNuvrOJsmAwaAYNGmR2797dYfw73/mO+da3vtVp/1WrVhlJLCwsLCwsLANgOXfu3E2zQtTPfHz66adqbW1Venp6h/H09HT97//+b6f9y8rKVFpaGl5va2vTZ599puHDh8vh6HlqDAQCysrK0rlz5+R2u3s8H6KL/sQuehO76E3siufeGGN0+fJlZWZm3nTfPn+3i8vlksvl6jCWmpoa9edxu91x94XQn9Cf2EVvYhe9iV3x2puUlJRu7Rf1C05HjBihQYMGye/3dxj3+/3yeDzRfjoAANDPRD18JCYmatq0aaqpqQmPtbW1qaamRl6vN9pPBwAA+pleedmltLRUhYWFuvfeezV9+nRt3rxZV69eDb/7xSaXy6VVq1Z1emkHsYH+xC56E7voTeyiN93jMKY774mJ3D/8wz/oJz/5iXw+n6ZOnaotW7ZoxowZvfFUAACgH+m18AEAANAVbiwHAACsInwAAACrCB8AAMAqwgcAALBqwIePiooKjR07VklJSZoxY4befffdvi4p7pSXl8vhcHRYxo8fH97e0tKioqIiDR8+XEOHDlVBQUGnP1KH6Hj77bc1b948ZWZmyuFwaM+ePR22G2O0cuVKZWRkaMiQIcrJydGpU6c67PPZZ59p8eLFcrvdSk1N1dKlS3XlyhWLRzEw3aw3TzzxRKfvo4cffrjDPvSmd6xdu1b33Xefhg0bplGjRmnBggVqaGjosE93fo6dPXtWc+fOVXJyskaNGqUf//jH+uKLL2weSswY0OHjtddeU2lpqVatWqX33ntPU6ZMUX5+vi5evNjXpcWdiRMn6sKFC+Hl0KFD4W0lJSXau3evdu3apdraWp0/f14LFy7sw2oHrqtXr2rKlCmqqKjocvuGDRu0ZcsWbd++XYcPH9Ztt92m/Px8tbS0hPdZvHixPvjgA1VXV+v111/X22+/rWXLltk6hAHrZr2RpIcffrjD99Err7zSYTu96R21tbUqKipSfX29qqurFQqFlJeXp6tX/+8u6Tf7Odba2qq5c+fq2rVreuedd/TSSy9p586dWrlyZV8cUt/r+X1sY9f06dNNUVFReL21tdVkZmaatWvX9mFV8WfVqlVmypQpXW5rbGw0TqfT7Nq1Kzz2P//zP0aSqaurs1RhfJLU4e7TbW1txuPxmJ/85CfhscbGRuNyucwrr7xijDHmww8/NJLMkSNHwvu88cYbxuFwmE8++cRa7QPd9b0xxpjCwkIzf/78L30MvbHn4sWLRpKpra01xnTv59gvf/lLk5CQYHw+X3ifbdu2GbfbbYLBoN0DiAED9szHtWvXdOzYMeXk5ITHEhISlJOTo7q6uj6sLD6dOnVKmZmZuuOOO7R48WKdPXtWknTs2DGFQqEOfRo/frxGjx5Nnyw7c+aMfD5fh16kpKRoxowZ4V7U1dUpNTVV9957b3ifnJwcJSQk6PDhw9ZrjjcHDx7UqFGjdNddd+l73/ueLl26FN5Gb+xpamqSJKWlpUnq3s+xuro63XPPPR3u+J6fn69AIKAPPvjAYvWxYcCGj08//VStra0dGi1J6enp8vl8fVRVfJoxY4Z27typffv2adu2bTpz5oz+5E/+RJcvX5bP51NiYmKnOxnTJ/vaP983+p7x+XwaNWpUh+2DBw9WWloa/eplDz/8sF5++WXV1NRo/fr1qq2t1Zw5c9Ta2iqJ3tjS1tam4uJi3X///Zo0aZIkdevnmM/n6/J7q31bvOmVe7sAf2jOnDnhf0+ePFkzZszQmDFj9LOf/UxDhgzpw8qA/uOxxx4L//uee+7R5MmT9bWvfU0HDx7U7Nmz+7Cy+FJUVKSTJ092uG4NkRuwZz5GjBihQYMGdbra2O/3y+Px9FFVkKTU1FTdeeedOn36tDwej65du6bGxsYO+9An+9o/3zf6nvF4PJ0u2P7iiy/02Wef0S/L7rjjDo0YMUKnT5+WRG9sePrpp/X666/rV7/6lW6//fbweHd+jnk8ni6/t9q3xZsBGz4SExM1bdo01dTUhMfa2tpUU1Mjr9fbh5XhypUr+vWvf62MjAxNmzZNTqezQ58aGhp09uxZ+mRZdna2PB5Ph14EAgEdPnw43Auv16vGxkYdO3YsvM+BAwfU1tbGjSMt++1vf6tLly4pIyNDEr3pTcYYPf3009q9e7cOHDig7OzsDtu783PM6/Xq/fff7xAQq6ur5Xa7dffdd9s5kFjS11e89qZXX33VuFwus3PnTvPhhx+aZcuWmdTU1A5XG6P3/fCHPzQHDx40Z86cMf/5n/9pcnJyzIgRI8zFixeNMcb81V/9lRk9erQ5cOCAOXr0qPF6vcbr9fZx1QPT5cuXzfHjx83x48eNJLNx40Zz/Phx8/HHHxtjjFm3bp1JTU01P//5z81///d/m/nz55vs7Gzzu9/9LjzHww8/bP74j//YHD582Bw6dMiMGzfOPP744311SAPGjXpz+fJl86Mf/cjU1dWZM2fOmLfeest8/etfN+PGjTMtLS3hOehN7/je975nUlJSzMGDB82FCxfCS3Nzc3ifm/0c++KLL8ykSZNMXl6eOXHihNm3b58ZOXKkKSsr64tD6nMDOnwYY8xPf/pTM3r0aJOYmGimT59u6uvr+7qkuPPoo4+ajIwMk5iYaL761a+aRx991Jw+fTq8/Xe/+5156qmnzFe+8hWTnJxs/vzP/9xcuHChDyseuH71q18ZSZ2WwsJCY8zv3267YsUKk56eblwul5k9e7ZpaGjoMMelS5fM448/boYOHWrcbrdZsmSJuXz5ch8czcByo940NzebvLw8M3LkSON0Os2YMWPMk08+2ek/UvSmd3TVF0mmsrIyvE93fo795je/MXPmzDFDhgwxI0aMMD/84Q9NKBSyfDSxwWGMMbbPtgAAgPg1YK/5AAAAsYnwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKv+P9Sl7Lu8M24XAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "rice_consumption = food_consumption[food_consumption['food_category'] == 'rice']\n",
+ "\n",
+ "# Q-4)Plot the histogram of co2_emission for rice\n",
+ "rice_consumption['co2_emission'].hist();"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "mean 37.591615\n",
+ "median 15.200000\n",
+ "Name: co2_emission, dtype: float64"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Q-5) Calculate mean and median of co2_emission with .agg()\n",
+ "rice_consumption['co2_emission'].agg([np.mean, np.median])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[ 0. 3.54 11.026 25.59 99.978 1712. ]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Q-6) Calculate the quintiles of co2_emission\n",
+ "co2_emission = [food_consumption['co2_emission']]\n",
+ "print(np.quantile(co2_emission, np.linspace(0, 1, 6)))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " var std\n",
+ "food_category \n",
+ "beef 88748.408132 297.906710\n",
+ "dairy 17671.891985 132.935669\n",
+ "eggs 21.371819 4.622966\n",
+ "fish 921.637349 30.358481\n",
+ "lamb_goat 16475.518363 128.356996\n",
+ "nuts 35.639652 5.969895\n",
+ "pork 3094.963537 55.632396\n",
+ "poultry 245.026801 15.653332\n",
+ "rice 2281.376243 47.763754\n",
+ "soybeans 0.879882 0.938020\n",
+ "wheat 71.023937 8.427570\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Q-7) Calculate the variance and standard deviation of co2_emission for food_categories\n",
+ "print(food_consumption.groupby('food_category')['co2_emission'].agg([np.var, np.std]))\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAGdCAYAAAAi3mhQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAk4UlEQVR4nO3df1DUdeLH8deiyyLpQoCKJKj90sq0osC9OktFyRyzZKZS5zLPq6ujrqQ6j7sr0e/dSTWj3d2gNTdmd9ORnTdpY7+MKK1OMCWtqItRx7JCsDRAJdZV3t8/GHbbwB+7gG9Zno+ZndzPr33va967vPrAZ9dhjDECAACwKMr2AAAAACgkAADAOgoJAACwjkICAACso5AAAADrKCQAAMA6CgkAALCOQgIAAKzrbXsAP9bc3Kzq6mr169dPDofD9nAAAMApMMbo4MGDSklJUVRU6Oc7zrhCUl1drdTUVNvDAAAAYfjyyy81ePDgkPc74wpJv379JLU8IbfbHfL+Pp9Pb7zxhiZNmiSn09nZw+tWyCKALALIIoAsWpBDAFkEhJpFQ0ODUlNT/T/HQ3XGFZLWX9O43e6wC0lsbKzcbjeTiSz8yCKALALIogU5BJBFQLhZhPvnFvxRKwAAsI5CAgAArKOQAAAA6ygkAADAOgoJAACwjkICAACso5AAAADrKCQAAMA6CgkAALCOQgIAAKwLqZAUFBTI4XAE3UaMGOFf39TUpNzcXCUmJqpv377KyclRbW1tpw8aAABElpDPkFxyySXau3ev//bee+/5182bN0/r1q3T6tWrtXHjRlVXV2v69OmdOmAAABB5Qv5yvd69eys5ObnN8vr6eq1YsULFxcUaP368JGnlypW66KKLVF5erjFjxnR8tAAAICKFXEh27NihlJQUxcTEyOPxaPHixUpLS1NFRYV8Pp+ysrL8244YMUJpaWkqKys7biHxer3yer3++w0NDZJavmXQ5/OFOjz/PuHsG2nIIoAsAsgigCxakEMAWQSEmkVHM3MYY8ypbvzaa6/p0KFDGj58uPbu3auFCxfq66+/VmVlpdatW6c5c+YElQtJysjI0Lhx4/TYY4+1e8yCggItXLiwzfLi4mLFxsaG+HQAAIANjY2Nmjlzpurr6+V2u0PeP6RC8mN1dXUaMmSIlixZoj59+oRVSNo7Q5Kamqpvv/02rCfk8/lUUlKiiRMnyul0tlk/smB9yMe0rbIgO6z9TpZFT0IWAWQRQBYtyCGALAJCzaKhoUFJSUlhF5KQf2XzQ/Hx8brwwgu1c+dOTZw4UUeOHFFdXZ3i4+P929TW1rb7NyetXC6XXC5Xm+VOp7NDk+F4+3uPOcI+pi0dfVF0NMtIQhYBZBFAFi3IIYAsAk41i47m1aHPITl06JB27dqlQYMGKT09XU6nU6Wlpf71VVVV2rNnjzweT4cGCQAAIltIZ0geeughTZ06VUOGDFF1dbUWLFigXr16acaMGYqLi9PcuXOVl5enhIQEud1u3XffffJ4PFxhAwAATiikQvLVV19pxowZ2r9/v/r3769rrrlG5eXl6t+/vyRp6dKlioqKUk5Ojrxer7Kzs7Vs2bIuGTgAAIgcIRWSVatWnXB9TEyMioqKVFRU1KFBAQCAnoXvsgEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGBdhwpJYWGhHA6HHnjgAf+ypqYm5ebmKjExUX379lVOTo5qa2s7Ok4AABDBwi4kW7Zs0dNPP61Ro0YFLZ83b57WrVun1atXa+PGjaqurtb06dM7PFAAABC5wiokhw4d0qxZs/T3v/9dZ599tn95fX29VqxYoSVLlmj8+PFKT0/XypUrtWnTJpWXl3faoAEAQGQJq5Dk5uZqypQpysrKClpeUVEhn88XtHzEiBFKS0tTWVlZx0YKAAAiVu9Qd1i1apU++OADbdmypc26mpoaRUdHKz4+Pmj5wIEDVVNT0+7xvF6vvF6v/35DQ4MkyefzyefzhTo8/z7H29fVy4R8TNvCyeGH+4W7fyQhiwCyCCCLFuQQQBYBoWbR0cxCKiRffvml7r//fpWUlCgmJqZDD9xq8eLFWrhwYZvlb7zxhmJjY8M+bklJSbvLH88I+5DWvPrqqx3a/3hZ9ERkEUAWAWTRghwCyCLgVLNobGzs0OM4jDGnfMpg7dq1uvnmm9WrVy//smPHjsnhcCgqKkrr169XVlaWvvvuu6CzJEOGDNEDDzygefPmtTlme2dIUlNT9e2338rtdof8hHw+n0pKSjRx4kQ5nc4260cWrA/5mLZVFmSHtd/JsuhJyCKALALIogU5BJBFQKhZNDQ0KCkpSfX19WH9/A7pDMmECRP08ccfBy2bM2eORowYofnz5ys1NVVOp1OlpaXKycmRJFVVVWnPnj3yeDztHtPlcsnlcrVZ7nQ6OzQZjre/95gj7GPa0tEXRUezjCRkEUAWAWTRghwCyCLgVLPoaF4hFZJ+/fpp5MiRQcvOOussJSYm+pfPnTtXeXl5SkhIkNvt1n333SePx6MxY8Z0aKAAACByhfxHrSezdOlSRUVFKScnR16vV9nZ2Vq2bFlnPwwAAIggHS4kGzZsCLofExOjoqIiFRUVdfTQAACgh+C7bAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANaFVEiWL1+uUaNGye12y+12y+Px6LXXXvOvb2pqUm5urhITE9W3b1/l5OSotra20wcNAAAiS0iFZPDgwSosLFRFRYW2bt2q8ePHa9q0afrkk08kSfPmzdO6deu0evVqbdy4UdXV1Zo+fXqXDBwAAESO3qFsPHXq1KD7f/rTn7R8+XKVl5dr8ODBWrFihYqLizV+/HhJ0sqVK3XRRRepvLxcY8aM6bxRAwCAiBJSIfmhY8eOafXq1Tp8+LA8Ho8qKirk8/mUlZXl32bEiBFKS0tTWVnZcQuJ1+uV1+v1329oaJAk+Xw++Xy+kMfVus/x9nX1MiEf07ZwcvjhfuHuH0nIIoAsAsiiBTkEkEVAqFl0NDOHMSakn9Aff/yxPB6Pmpqa1LdvXxUXF+uGG25QcXGx5syZE1QuJCkjI0Pjxo3TY4891u7xCgoKtHDhwjbLi4uLFRsbG8rQAACAJY2NjZo5c6bq6+vldrtD3j/kMyTDhw/X9u3bVV9fr//85z+aPXu2Nm7cGPIDt8rPz1deXp7/fkNDg1JTUzVp0qSwnpDP51NJSYkmTpwop9PZZv3IgvVhj9WWyoLssPY7WRY9CVkEkEUAWbQghwCyCAg1i9bfcIQr5EISHR2t888/X5KUnp6uLVu26C9/+YtuvfVWHTlyRHV1dYqPj/dvX1tbq+Tk5OMez+VyyeVytVnudDo7NBmOt7/3mCPsY9rS0RdFR7OMJGQRQBYBZNGCHALIIuBUs+hoXh3+HJLm5mZ5vV6lp6fL6XSqtLTUv66qqkp79uyRx+Pp6MMAAIAIFtIZkvz8fE2ePFlpaWk6ePCgiouLtWHDBq1fv15xcXGaO3eu8vLylJCQILfbrfvuu08ej4crbAAAwAmFVEj27dun22+/XXv37lVcXJxGjRql9evXa+LEiZKkpUuXKioqSjk5OfJ6vcrOztayZcu6ZOAAACByhFRIVqxYccL1MTExKioqUlFRUYcGBQAAeha+ywYAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYF1v2wPAyQ397Sth7efqZfR4hjSyYL28xxydPKoT+7xwyml9PABA98YZEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1vW2PQBEpqG/fcX2EIK4ehk9niGNLFgv7zFHu9t8XjjlNI8KANCKMyQAAMA6CgkAALAupEKyePFiXXXVVerXr58GDBigm266SVVVVUHbNDU1KTc3V4mJierbt69ycnJUW1vbqYMGAACRJaRCsnHjRuXm5qq8vFwlJSXy+XyaNGmSDh8+7N9m3rx5WrdunVavXq2NGzequrpa06dP7/SBAwCAyBHSH7W+/vrrQfefffZZDRgwQBUVFRo7dqzq6+u1YsUKFRcXa/z48ZKklStX6qKLLlJ5ebnGjBnTeSMHAAARo0NX2dTX10uSEhISJEkVFRXy+XzKysrybzNixAilpaWprKys3ULi9Xrl9Xr99xsaGiRJPp9PPp8v5DG17nO8fV29TMjH7K5cUSbovz3ZqWQRznzrjk72GulJyKIFOQSQRUCoWXQ0M4cxJqyfVs3NzbrxxhtVV1en9957T5JUXFysOXPmBBUMScrIyNC4ceP02GOPtTlOQUGBFi5c2GZ5cXGxYmNjwxkaAAA4zRobGzVz5kzV19fL7XaHvH/YZ0hyc3NVWVnpLyPhys/PV15env9+Q0ODUlNTNWnSpLCekM/nU0lJiSZOnCin09lm/ciC9R0ab3fiijL6vyub9cjWKHmb2//sjZ7iVLKoLMg+zaOy42SvkZ6ELFqQQwBZBISaRetvOMIVViG599579fLLL+udd97R4MGD/cuTk5N15MgR1dXVKT4+3r+8trZWycnJ7R7L5XLJ5XK1We50Ojs0GY63//E+FCuSeZsdPfJ5t+dEWfS0N5+OvsYiCVm0IIcAsgg41Sw6mldIV9kYY3TvvfdqzZo1euuttzRs2LCg9enp6XI6nSotLfUvq6qq0p49e+TxeDo0UAAAELlCOkOSm5ur4uJivfTSS+rXr59qamokSXFxcerTp4/i4uI0d+5c5eXlKSEhQW63W/fdd588Hg9X2AAAgOMKqZAsX75cknTdddcFLV+5cqXuuOMOSdLSpUsVFRWlnJwceb1eZWdna9myZZ0yWAAAEJlCKiSnckFOTEyMioqKVFRUFPagAABAz8J32QAAAOsoJAAAwDoKCQAAsI5CAgAArKOQAAAA6ygkAADAOgoJAACwjkICAACso5AAAADrKCQAAMA6CgkAALCOQgIAAKyjkAAAAOsoJAAAwDoKCQAAsK637QEAZ4qhv33F9hBC9nnhFNtDAIBOwRkSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUUEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANZRSAAAgHUhF5J33nlHU6dOVUpKihwOh9auXRu03hijRx99VIMGDVKfPn2UlZWlHTt2dNZ4AQBABAq5kBw+fFijR49WUVFRu+sff/xx/fWvf9VTTz2lzZs366yzzlJ2draampo6PFgAABCZeoe6w+TJkzV58uR21xlj9OSTT+oPf/iDpk2bJkn65z//qYEDB2rt2rW67bbbOjZaAAAQkUIuJCeye/du1dTUKCsry78sLi5OmZmZKisra7eQeL1eeb1e//2GhgZJks/nk8/nC3kMrfscb19XLxPyMbsrV5QJ+m9PFqlZdMVrpCchixbkEEAWAaFm0dHMHMaYsN+hHQ6H1qxZo5tuukmStGnTJl199dWqrq7WoEGD/NvdcsstcjgceuGFF9oco6CgQAsXLmyzvLi4WLGxseEODQAAnEaNjY2aOXOm6uvr5Xa7Q96/U8+QhCM/P195eXn++w0NDUpNTdWkSZPCekI+n08lJSWaOHGinE5nm/UjC9Z3aLzdiSvK6P+ubNYjW6PkbXbYHo5VkZpFZUF2yPuc7DXSk5BFC3IIIIuAULNo/Q1HuDq1kCQnJ0uSamtrg86Q1NbW6rLLLmt3H5fLJZfL1Wa50+ns0GQ43v7eY5Hzw+hUeZsdPfJ5tyfSsuiK10hPRBYtyCGALAJONYuO5tWpn0MybNgwJScnq7S01L+soaFBmzdvlsfj6cyHAgAAESTkMySHDh3Szp07/fd3796t7du3KyEhQWlpaXrggQf0xz/+URdccIGGDRumRx55RCkpKf6/MwEAAPixkAvJ1q1bNW7cOP/91r//mD17tp599ln95je/0eHDh3XXXXeprq5O11xzjV5//XXFxMR03qgBAEBECbmQXHfddTrRhTkOh0OLFi3SokWLOjQwAADQc/BdNgAAwDoKCQAAsI5CAgAArKOQAAAA6ygkAADAOgoJAACwjkICAACso5AAAADrKCQAAMA6CgkAALCOQgIAAKyjkAAAAOsoJAAAwDoKCQAAsK637QEA6FmG/vYV20Pwc/UyejxDGlmwXt5jjuNu93nhlNM4KqBn4gwJAACwjkICAACso5AAAADrKCQAAMA6CgkAALCOQgIAAKzjsl+gGwvnEtpTvdQVAE4nzpAAAADrKCQAAMA6CgkAALCOQgIAAKyjkAAAAOsoJAAAwDoKCQAAsI5CAgAArKOQAAAA6ygkAADAOgoJAACwjkICAACso5AAAADrKCQAAMA6CgkAALCOQgIAAKyjkAAAAOsoJAAAwDoKCQAAsI5CAgAArKOQAAAA6ygkAADAOgoJAACwjkICAACso5AAAADrKCQAAMA6CgkAALCut+0BAMCZbuhvX7E9hLB8XjjF9hCAU8YZEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYx2W/ABChTvVyZVcvo8czpJEF6+U95ujiUZ1Yd7xUuTteFn4m5swZEgAAYB2FBAAAWNdlhaSoqEhDhw5VTEyMMjMz9f7773fVQwEAgG6uSwrJCy+8oLy8PC1YsEAffPCBRo8erezsbO3bt68rHg4AAHRzXVJIlixZojvvvFNz5szRxRdfrKeeekqxsbF65plnuuLhAABAN9fpV9kcOXJEFRUVys/P9y+LiopSVlaWysrK2mzv9Xrl9Xr99+vr6yVJBw4ckM/nC/nxfT6fGhsbtX//fjmdzjbrex89HPIxu6vezUaNjc3q7YvSsWa7fzlvG1kEkEUAWbQ4k3LYv3+/1cc/2c+Q9nTHnyunknOoWRw8eFCSZIwJb1Cmk3399ddGktm0aVPQ8ocffthkZGS02X7BggVGEjdu3Lhx48YtAm5ffvllWP3B+ueQ5OfnKy8vz3+/ublZBw4cUGJiohyO0Jt6Q0ODUlNT9eWXX8rtdnfmULsdsgggiwCyCCCLFuQQQBYBoWZhjNHBgweVkpIS1uN1eiFJSkpSr169VFtbG7S8trZWycnJbbZ3uVxyuVxBy+Lj4zs8Drfb3eMnUyuyCCCLALIIIIsW5BBAFgGhZBEXFxf243T6H7VGR0crPT1dpaWl/mXNzc0qLS2Vx+Pp7IcDAAARoEt+ZZOXl6fZs2fryiuvVEZGhp588kkdPnxYc+bM6YqHAwAA3VyXFJJbb71V33zzjR599FHV1NTosssu0+uvv66BAwd2xcMFcblcWrBgQZtfA/VEZBFAFgFkEUAWLcghgCwCTncWDmPCvT4HAACgc/BdNgAAwDoKCQAAsI5CAgAArKOQAAAA6yKukBQVFWno0KGKiYlRZmam3n//fdtD6lSLFy/WVVddpX79+mnAgAG66aabVFVVFbTNddddJ4fDEXS7++67g7bZs2ePpkyZotjYWA0YMEAPP/ywjh49ejqfSocVFBS0eZ4jRozwr29qalJubq4SExPVt29f5eTktPnAvkjIQZKGDh3aJguHw6Hc3FxJkT0n3nnnHU2dOlUpKSlyOBxau3Zt0HpjjB599FENGjRIffr0UVZWlnbs2BG0zYEDBzRr1iy53W7Fx8dr7ty5OnToUNA2H330kX76058qJiZGqampevzxx7v6qYXkRDn4fD7Nnz9fl156qc466yylpKTo9ttvV3V1ddAx2ptHhYWFQduc6TlIJ58Td9xxR5vnef311wdtEwlzQjp5Fu29bzgcDj3xxBP+bU7bvAjrA+fPUKtWrTLR0dHmmWeeMZ988om58847TXx8vKmtrbU9tE6TnZ1tVq5caSorK8327dvNDTfcYNLS0syhQ4f821x77bXmzjvvNHv37vXf6uvr/euPHj1qRo4cabKyssy2bdvMq6++apKSkkx+fr6NpxS2BQsWmEsuuSToeX7zzTf+9XfffbdJTU01paWlZuvWrWbMmDHmJz/5iX99pORgjDH79u0LyqGkpMRIMm+//bYxJrLnxKuvvmp+//vfmxdffNFIMmvWrAlaX1hYaOLi4szatWvNhx9+aG688UYzbNgw8/333/u3uf76683o0aNNeXm5effdd835559vZsyY4V9fX19vBg4caGbNmmUqKyvN888/b/r06WOefvrp0/U0T+pEOdTV1ZmsrCzzwgsvmM8++8yUlZWZjIwMk56eHnSMIUOGmEWLFgXNkx++t3SHHIw5+ZyYPXu2uf7664Oe54EDB4K2iYQ5YczJs/hhBnv37jXPPPOMcTgcZteuXf5tTte8iKhCkpGRYXJzc/33jx07ZlJSUszixYstjqpr7du3z0gyGzdu9C+79tprzf3333/cfV599VUTFRVlampq/MuWL19u3G638Xq9XTncTrVgwQIzevTodtfV1dUZp9NpVq9e7V/2v//9z0gyZWVlxpjIyaE9999/vznvvPNMc3OzMabnzIkfv+E2Nzeb5ORk88QTT/iX1dXVGZfLZZ5//nljjDGffvqpkWS2bNni3+a1114zDofDfP3118YYY5YtW2bOPvvsoCzmz59vhg8f3sXPKDzt/eD5sffff99IMl988YV/2ZAhQ8zSpUuPu093y8GY9rOYPXu2mTZt2nH3icQ5YcypzYtp06aZ8ePHBy07XfMiYn5lc+TIEVVUVCgrK8u/LCoqSllZWSorK7M4sq5VX18vSUpISAha/q9//UtJSUkaOXKk8vPz1djY6F9XVlamSy+9NOiD6rKzs9XQ0KBPPvnk9Ay8k+zYsUMpKSk699xzNWvWLO3Zs0eSVFFRIZ/PFzQfRowYobS0NP98iKQcfujIkSN67rnn9POf/zzoCyp7ypz4od27d6umpiZoHsTFxSkzMzNoHsTHx+vKK6/0b5OVlaWoqCht3rzZv83YsWMVHR3t3yY7O1tVVVX67rvvTtOz6Vz19fVyOBxtvjussLBQiYmJuvzyy/XEE08E/douknLYsGGDBgwYoOHDh+uee+7R/v37/et66pyora3VK6+8orlz57ZZdzrmhfVv++0s3377rY4dO9bm02AHDhyozz77zNKoulZzc7MeeOABXX311Ro5cqR/+cyZMzVkyBClpKToo48+0vz581VVVaUXX3xRklRTU9NuTq3ruovMzEw9++yzGj58uPbu3auFCxfqpz/9qSorK1VTU6Po6Og2b7YDBw70P8dIyeHH1q5dq7q6Ot1xxx3+ZT1lTvxY69jbe24/nAcDBgwIWt+7d28lJCQEbTNs2LA2x2hdd/bZZ3fJ+LtKU1OT5s+frxkzZgR9adqvf/1rXXHFFUpISNCmTZuUn5+vvXv3asmSJZIiJ4frr79e06dP17Bhw7Rr1y797ne/0+TJk1VWVqZevXr1yDkhSf/4xz/Ur18/TZ8+PWj56ZoXEVNIeqLc3FxVVlbqvffeC1p+1113+f996aWXatCgQZowYYJ27dql884773QPs8tMnjzZ/+9Ro0YpMzNTQ4YM0b///W/16dPH4sjsWrFihSZPnhz0FeA9ZU7g5Hw+n2655RYZY7R8+fKgdXl5ef5/jxo1StHR0frlL3+pxYsXR9RHqd92223+f1966aUaNWqUzjvvPG3YsEETJkywODK7nnnmGc2aNUsxMTFBy0/XvIiYX9kkJSWpV69eba6iqK2tVXJysqVRdZ17771XL7/8st5++20NHjz4hNtmZmZKknbu3ClJSk5Objen1nXdVXx8vC688ELt3LlTycnJOnLkiOrq6oK2+eF8iMQcvvjiC7355pv6xS9+ccLtesqcaB37id4XkpOTtW/fvqD1R48e1YEDByJurrSWkS+++EIlJSUn/Ur5zMxMHT16VJ9//rmkyMnhx84991wlJSUFvR56ypxo9e6776qqquqk7x1S182LiCkk0dHRSk9PV2lpqX9Zc3OzSktL5fF4LI6scxljdO+992rNmjV666232pwma8/27dslSYMGDZIkeTweffzxx0EvuNY3p4svvrhLxn06HDp0SLt27dKgQYOUnp4up9MZNB+qqqq0Z88e/3yIxBxWrlypAQMGaMqUKSfcrqfMiWHDhik5OTloHjQ0NGjz5s1B86Curk4VFRX+bd566y01Nzf7i5vH49E777wjn8/n36akpETDhw/vNqfmW8vIjh079OabbyoxMfGk+2zfvl1RUVH+X19EQg7t+eqrr7R///6g10NPmBM/tGLFCqWnp2v06NEn3bbL5kVIfwJ7hlu1apVxuVzm2WefNZ9++qm56667THx8fNCVA93dPffcY+Li4syGDRuCLsFqbGw0xhizc+dOs2jRIrN161aze/du89JLL5lzzz3XjB071n+M1ks8J02aZLZv325ef/11079//25xiecPPfjgg2bDhg1m9+7d5r///a/JysoySUlJZt++fcaYlst+09LSzFtvvWW2bt1qPB6P8Xg8/v0jJYdWx44dM2lpaWb+/PlByyN9Thw8eNBs27bNbNu2zUgyS5YsMdu2bfNfPVJYWGji4+PNSy+9ZD766CMzbdq0di/7vfzyy83mzZvNe++9Zy644IKgSzzr6urMwIEDzc9+9jNTWVlpVq1aZWJjY8+oSzxPlMORI0fMjTfeaAYPHmy2b98e9N7RemXEpk2bzNKlS8327dvNrl27zHPPPWf69+9vbr/9dv9jdIccjDlxFgcPHjQPPfSQKSsrM7t37zZvvvmmueKKK8wFF1xgmpqa/MeIhDlhzMlfH8a0XLYbGxtrli9f3mb/0zkvIqqQGGPM3/72N5OWlmaio6NNRkaGKS8vtz2kTiWp3dvKlSuNMcbs2bPHjB071iQkJBiXy2XOP/988/DDDwd95oQxxnz++edm8uTJpk+fPiYpKck8+OCDxufzWXhG4bv11lvNoEGDTHR0tDnnnHPMrbfeanbu3Olf//3335tf/epX5uyzzzaxsbHm5ptvNnv37g06RiTk0Gr9+vVGkqmqqgpaHulz4u233273NTF79mxjTMulv4888ogZOHCgcblcZsKECW0y2r9/v5kxY4bp27evcbvdZs6cOebgwYNB23z44YfmmmuuMS6Xy5xzzjmmsLDwdD3FU3KiHHbv3n3c947Wz6qpqKgwmZmZJi4uzsTExJiLLrrI/PnPfw76IW3MmZ+DMSfOorGx0UyaNMn079/fOJ1OM2TIEHPnnXe2+R/XSJgTxpz89WGMMU8//bTp06ePqaura7P/6ZwXDmOMOfXzKQAAAJ0vYv6GBAAAdF8UEgAAYB2FBAAAWEchAQAA1lFIAACAdRQSAABgHYUEAABYRyEBAADWUUgAAIB1FBIAAGAdhQQAAFhHIQEAANb9P2c37zk9kAllAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Q-8) Create histogram of co2_emission for food_category 'beef'\n",
+ "food_consumption[food_consumption['food_category'] == 'beef']['co2_emission'].hist();"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.6"
+ },
+ "orig_nbformat": 4,
+ "vscode": {
+ "interpreter": {
+ "hash": "bac75f92805af78f4c3d905bf4b7769093ac074cfb83aa4dc437efeee303fdc9"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}