diff --git a/Homework.py b/Homework.py new file mode 100644 index 0000000..07efc52 --- /dev/null +++ b/Homework.py @@ -0,0 +1,147 @@ +import statistics +import pandas as pd +import matplotlib.pyplot as plt +import numpy as np + + +food_consumption = pd.read_csv('food_consumption.csv', index_col=0) +# print(food_consumption.head(), ' \n') + +##################################################################################################################################### + +# be_consumption = food_consumption[food_consumption['country'] == 'Belgium'] + +# mn1 = statistics.mean(be_consumption['consumption']) +# print('Mean For Belgium: ', mn1, ) + +# md1 = statistics.median(be_consumption['consumption']) +# print('Median For Belgium: ', md1, ' \n') + + +# usa_consumption = food_consumption[food_consumption['country'] == 'USA'] + +# mn2 = statistics.mean(usa_consumption['consumption']) +# print('Mean For USA: ', mn2) + +# md2 = statistics.median(usa_consumption['consumption']) +# print('Median For USA: ', md2, ' \n') + + + +##################################################################################################################################### +# rice_consumption = food_consumption[food_consumption['food_category'] == 'rice'] + +# # Group the data by country and calculate the sum of CO2 emissions for each country +# armut=rice_consumption[["country","co2_emission"]] +# co2_emission_by_country = rice_consumption.groupby('country')['co2_emission'].sum().reset_index() + +# # Find the country with the highest CO2 emissions +# most_co2_emission_country = co2_emission_by_country.loc[co2_emission_by_country['co2_emission'].idxmax()]['country'] + +# # Create the histogram +# # Create the histogram +# plt.hist(rice_consumption['co2_emission'], bins=130) + +# # Add the title, xlabel, ylabel +# plt.xlabel("CO2 Emission (kg CO2 eq/kg food)") +# plt.ylabel("Frequency") +# plt.title("CO2 Emission of Rice Consumption") + +# # Get the highest CO2 emission value +# max_co2_emission = co2_emission_by_country.loc[co2_emission_by_country['co2_emission'].idxmax()]['co2_emission'] + + +# # Add the most CO2 Emission Country +# plt.text(x = max_co2_emission, y = max(plt.yticks()[0])*0.9, +# s = f"Country with highest CO2 emissions: {most_co2_emission_country}", +# fontsize = 10, color = 'blue', +# ha = 'center', va = 'center') +# plt.show() + + +# rice_consumption[["country","co2_emission"]].sort_values("co2_emission", ascending=False).to_json("co2_emission_of_rice_consumption_sorted.json", orient='index') + + +##################################################################################################################################### + +# rice_consumption = food_consumption[food_consumption['food_category'] == 'rice'] + +# rice_mean = statistics.mean(rice_consumption['co2_emission']) +# rice_median = statistics.median(rice_consumption['co2_emission']) + +# df = pd.DataFrame( +# { +# "Mean" : [(rice_mean)], '| ' +# "Median" : [(rice_median)] +# } +# ) + +# print(df) +# print() + +# ##################################################################################################################################### + +# co2_emission = food_consumption['co2_emission'] +# sorted_data = food_consumption.sort_values("co2_emission", ascending=False).to_json("Quantile_sample.json", orient='index') + +# print(sorted_data) + +# x = np.quantile(co2_emission, np.linspace(0, 1, 6)) +# # Quantile: bize veri gruplarinin belli bir orana bolunmesine ve bu oran grruplarinin en yuksek degerini vermesine yarar. + +# print(x) +# print() + +# ##################################################################################################################################### + +food_category = food_consumption['food_category'] + +# co2_var = food_consumption.groupby('food_category')['co2_emission'].var() +# # print(co2_var) +# co2_std = food_consumption.groupby('food_category')['co2_emission'].std() +# # print(co2_std) + +# data = {'co2_var': co2_var, +# 'co2_std': co2_std} + +# df = pd.DataFrame(data) +# print(df) +# print() + +# df = food_consumption.groupby('food_category')['co2_emission'].agg(['var', 'std', 'max', 'min', 'mean', 'median', 'mad']) +# print(df) + +# ##################################################################################################################################### + +co2_beef = food_consumption[food_consumption['food_category'] == 'beef'] +plt.hist(co2_beef['co2_emission'], bins=30) +plt.show() +print() + + +# co2_beef = food_consumption[food_consumption['food_category'] == 'beef'] +# co2_emissions = co2_beef['co2_emission'] + +# # Divide the emissions data into 4 quantiles +# co2_emissions_q = pd.qcut(co2_emissions, 30) + +# # Use your custom labels +# labels = ['Q{}'.format(i) for i in range(1,31)] +# # plt.figure(figsize=(5,5)) +# # plt.title("CO2 Emissions for Beef Consumption") +# # # Create a pie chart +# # plt.pie(co2_emissions_q.value_counts(), labels=labels, autopct='%1.1f%%') +# # plt.show() + + +# plt.figure(figsize=(5,5)) +# plt.title("CO2 Emissions for Beef Consumption") + +# plt.plot(labels, co2_emissions_q.value_counts(), marker='o', linestyle='--', color='b') + +# # Create a line chart with emissions data on the y-axis and +# # quantile labels on the x-axis +# plt.plot(labels, co2_emissions_q.value_counts()) +# plt.xlabel('Quantile') +# plt.ylabel('Emissions') +# plt.show() \ No newline at end of file