diff --git a/q01_read_csv_data_to_df/build.py b/q01_read_csv_data_to_df/build.py index 7af672f..6562a62 100644 --- a/q01_read_csv_data_to_df/build.py +++ b/q01_read_csv_data_to_df/build.py @@ -1,8 +1,20 @@ +# %load q01_read_csv_data_to_df/build.py # Default Imports import pandas as pd # Path has been given to you already to use in function. -path = "data/ipl_dataset.csv" +path = 'data/ipl_dataset.csv' # Solution +def read_csv_data_to_df(path): + + #returning dataFrame when reding csv file + df = pd.read_csv(path) + + return df + +read_csv_data_to_df(path) + + + diff --git a/q02_get_unique_values/build.py b/q02_get_unique_values/build.py index a98550a..c8d87e9 100644 --- a/q02_get_unique_values/build.py +++ b/q02_get_unique_values/build.py @@ -1,6 +1,21 @@ +# %load q02_get_unique_values/build.py from greyatomlib.pandas_project.q01_read_csv_data_to_df.build import read_csv_data_to_df - +import pandas as pd # You have been given the dataset already in 'ipl_df'. -ipl_df = read_csv_data_to_df("data/ipl_dataset.csv") +ipl_df = read_csv_data_to_df('data/ipl_dataset.csv') #Solution +def get_unique_venues(): + + # get unique values from venue column + unique_venue = ipl_df['venue'].unique() + + return unique_venue + + +get_unique_venues() +#pd.set_option('display.max_row', 1000) +#pd.set_option('display.max_columns',10) + + + diff --git a/q03_get_run_counts/build.py b/q03_get_run_counts/build.py index 07a05ac..1cee855 100644 --- a/q03_get_run_counts/build.py +++ b/q03_get_run_counts/build.py @@ -1,8 +1,19 @@ +# %load q03_get_run_counts/build.py # Default Imports from greyatomlib.pandas_project.q01_read_csv_data_to_df.build import read_csv_data_to_df # You have been given the dataset already in 'ipl_df'. -ipl_df = read_csv_data_to_df("./data/ipl_dataset.csv") +ipl_df = read_csv_data_to_df('./data/ipl_dataset.csv') # Solution +def get_run_counts(): + + # calculate the frequency of values in column runs + frequency_of_runs = ipl_df['runs'].value_counts() + + return frequency_of_runs + + +get_run_counts() + diff --git a/q04_get_match_specific_df/build.py b/q04_get_match_specific_df/build.py index 37ec96a..e1cbea7 100644 --- a/q04_get_match_specific_df/build.py +++ b/q04_get_match_specific_df/build.py @@ -1,7 +1,24 @@ +# %load q04_get_match_specific_df/build.py from greyatomlib.pandas_project.q01_read_csv_data_to_df.build import read_csv_data_to_df # You have been given dataset already in 'ipl_df'. -ipl_df = read_csv_data_to_df("./data/ipl_dataset.csv") +ipl_df = read_csv_data_to_df('./data/ipl_dataset.csv') # Solution +def get_match_specific_df(match_code): + + #checking type of data in match_code + #print(type(ipl_df['match_code'][0])) + + #match_code == ipl_df['match_code'][0] #output is true + + # result of particular match_code + result = ipl_df[ipl_df['match_code']== match_code] + + return result + +match_code = 392203 +get_match_specific_df(match_code) + + diff --git a/q05_create_bowler_filter/build.py b/q05_create_bowler_filter/build.py index 5c15aaa..434c0a3 100644 --- a/q05_create_bowler_filter/build.py +++ b/q05_create_bowler_filter/build.py @@ -1,7 +1,21 @@ +# %load q05_create_bowler_filter/build.py # Default imports from greyatomlib.pandas_project.q01_read_csv_data_to_df.build import read_csv_data_to_df # You have been given dataset already in 'ipl_df'. -ipl_df = read_csv_data_to_df("./data/ipl_dataset.csv") +ipl_df = read_csv_data_to_df('./data/ipl_dataset.csv') # Solution +def create_bowler_filter(bowler_name): + + #checking whether type of data in bowler column same or not + #print(ipl_df['bowler'][0]== bowler_name ) + + # returning filter result + result = ipl_df['bowler'] == bowler_name + + return result +bowler_name = 'I Sharma' +create_bowler_filter(bowler_name) + + diff --git a/q06_get_match_innings_runs/build.py b/q06_get_match_innings_runs/build.py index d938fc2..5f9f819 100644 --- a/q06_get_match_innings_runs/build.py +++ b/q06_get_match_innings_runs/build.py @@ -1,10 +1,21 @@ +# %load q06_get_match_innings_runs/build.py # Default Imports from greyatomlib.pandas_project.q01_read_csv_data_to_df.build import read_csv_data_to_df - +import pandas as pd # You have been given dataset already in 'ipl_df'. -ipl_df = read_csv_data_to_df("data/ipl_dataset.csv") +ipl_df = read_csv_data_to_df('data/ipl_dataset.csv') + +#pd.set_option('display.max_columns', 30) +def get_match_innings_runs(): + + df = (ipl_df.groupby(['match_code', 'inning']).sum()) + + return df + + +get_match_innings_runs().sort_values(ascending = False) + -# Solution diff --git a/q07_get_run_counts_by_match/build.py b/q07_get_run_counts_by_match/build.py index a18e534..281c71a 100644 --- a/q07_get_run_counts_by_match/build.py +++ b/q07_get_run_counts_by_match/build.py @@ -1,7 +1,21 @@ +# %load q07_get_run_counts_by_match/build.py # Default Imports from greyatomlib.pandas_project.q01_read_csv_data_to_df.build import read_csv_data_to_df - +import pandas as pd # You have been give the dataset already in 'ipl_df'. -ipl_df = read_csv_data_to_df("./data/ipl_dataset.csv") +ipl_df = read_csv_data_to_df('./data/ipl_dataset.csv') # Solution +def get_runs_counts_by_match(): + + # create new dataframe of following columns + ipl_df1 = ipl_df[['match_code','runs','batsman']] + + # create a pivot table + pivot_df = pd.pivot_table(ipl_df1, values = ['runs'], index = ['match_code'], columns = ['runs'], aggfunc = 'count') + + return pivot_df +get_runs_counts_by_match() + + +