diff --git a/q01_get_total_deliveries_players/build.py b/q01_get_total_deliveries_players/build.py index 2bc0f30..5d996b0 100644 --- a/q01_get_total_deliveries_players/build.py +++ b/q01_get_total_deliveries_players/build.py @@ -1,7 +1,17 @@ +# %load q01_get_total_deliveries_players/build.py # Default imports import numpy as np -ipl_matches_array =np.genfromtxt("data/ipl_matches_small.csv", dtype="|S50", skip_header=1, delimiter=",") +ipl_matches_array =np.genfromtxt('data/ipl_matches_small.csv', dtype='|S50', skip_header=1, delimiter=',') # Your Solution +def get_total_deliveries_played(batsman='SR Tendulkar'): + + + unique, counts = np.unique(ipl_matches_array[:,13], return_counts=True) + d=dict(zip(unique, counts)) + + occ=d[batsman] + return occ + diff --git a/q02_get_wicket_delivery_numbers_array/build.py b/q02_get_wicket_delivery_numbers_array/build.py index 47401a5..888a7c1 100644 --- a/q02_get_wicket_delivery_numbers_array/build.py +++ b/q02_get_wicket_delivery_numbers_array/build.py @@ -1,7 +1,21 @@ +# %load q02_get_wicket_delivery_numbers_array/build.py #Default Imports import numpy as np -ipl_matches_array =np.genfromtxt("data/ipl_matches_small.csv", dtype="|S50", skip_header=1, delimiter=",") +ipl_matches_array =np.genfromtxt('data/ipl_matches_small.csv', dtype='|S50', skip_header=1, delimiter=',') #Your Solution +def get_wicket_delivery_numbers_array(player): + + arr=ipl_matches_array[:,[11,20]] + + + + arr1=arr[list(np.where(arr[:,1]==b'ST Jayasuriya')),0] + + return arr1 + + + + diff --git a/q03_get_toss_win_count/build.py b/q03_get_toss_win_count/build.py index d0f09a9..3d12a02 100644 --- a/q03_get_toss_win_count/build.py +++ b/q03_get_toss_win_count/build.py @@ -1,7 +1,23 @@ +# %load q03_get_toss_win_count/build.py #Default Imports import numpy as np -ipl_matches_array =np.genfromtxt("data/ipl_matches_small.csv", dtype="|S50", skip_header=1, delimiter=",") +ipl_matches_array =np.genfromtxt('data/ipl_matches_small.csv', dtype='|S50', skip_header=1, delimiter=',') #Your Solution +def get_toss_win_count(team='Mumbai Indians'): + + arr=ipl_matches_array[:,[0,5]] + arr1=np.unique(arr,axis=0) + + unique,counts=np.unique(arr1[:,1],return_counts=True) + d=dict(zip(unique,counts)) + + toss=d[team] + + return toss + + + + diff --git a/q04_get_all_sixes_filter/build.py b/q04_get_all_sixes_filter/build.py index d0f09a9..5817fda 100644 --- a/q04_get_all_sixes_filter/build.py +++ b/q04_get_all_sixes_filter/build.py @@ -1,7 +1,15 @@ +# %load q04_get_all_sixes_filter/build.py #Default Imports import numpy as np -ipl_matches_array =np.genfromtxt("data/ipl_matches_small.csv", dtype="|S50", skip_header=1, delimiter=",") +ipl_matches_array =np.genfromtxt('data/ipl_matches_small.csv', dtype=int, skip_header=1, delimiter=',') #Your Solution +def get_all_sixes_filter(): + + arr=ipl_matches_array[:,16]==6 + + return arr + + diff --git a/q05_create_delivery_series/build.py b/q05_create_delivery_series/build.py index fcc1b8a..fd15183 100644 --- a/q05_create_delivery_series/build.py +++ b/q05_create_delivery_series/build.py @@ -1,7 +1,15 @@ +# %load q05_create_delivery_series/build.py #Default Imports import pandas as pd import numpy as np -ipl_matches_array =np.genfromtxt("data/ipl_matches_small.csv", dtype="|S50", skip_header=1, delimiter=",") +ipl_matches_array =np.genfromtxt('data/ipl_matches_small.csv', dtype='|S50', skip_header=1, delimiter=',') #Your Solution +def create_delivery_series(): + + p=pd.Series(list(ipl_matches_array[:,11])) + + return p + + diff --git a/q06_create_runs_series/build.py b/q06_create_runs_series/build.py index fcc1b8a..ddb7b7d 100644 --- a/q06_create_runs_series/build.py +++ b/q06_create_runs_series/build.py @@ -1,7 +1,16 @@ +# %load q06_create_runs_series/build.py #Default Imports import pandas as pd import numpy as np -ipl_matches_array =np.genfromtxt("data/ipl_matches_small.csv", dtype="|S50", skip_header=1, delimiter=",") +ipl_matches_array =np.genfromtxt('data/ipl_matches_small.csv', dtype='|S50', skip_header=1, delimiter=',') #Your Solution +def create_runs_series(match_code): + + d=dict(zip(ipl_matches_array[:,11],ipl_matches_array[:,16])) + s=pd.Series(d) + + return s + +