Skip to content

Commit e8c6d2f

Browse files
committed
pep8 fixed (contd)
1 parent f86dbde commit e8c6d2f

File tree

1 file changed

+6
-5
lines changed

1 file changed

+6
-5
lines changed

ot/bregman.py

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -920,8 +920,8 @@ def barycenter(A, M, reg, weights=None, numItermax=1000,
920920

921921

922922
def convolutional_barycenter2d(A, reg, weights=None, numItermax=10000, stopThr=1e-9, verbose=False, log=False):
923-
"""Compute the entropic regularized wasserstein barycenter of distributions A
924-
where A is a collection of 2D images.
923+
"""Compute the entropic regularized wasserstein barycenter of distributions A
924+
where A is a collection of 2D images.
925925
926926
The function solves the following optimization problem:
927927
@@ -966,8 +966,8 @@ def convolutional_barycenter2d(A, reg, weights=None, numItermax=10000, stopThr=1
966966
----------
967967
968968
.. [21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A. & Guibas, L. (2015).
969-
Convolutional wasserstein distances: Efficient optimal transportation on geometric domains
970-
ACM Transactions on Graphics (TOG), 34(4), 66
969+
Convolutional wasserstein distances: Efficient optimal transportation on geometric domains
970+
ACM Transactions on Graphics (TOG), 34(4), 66
971971
972972
973973
"""
@@ -993,7 +993,8 @@ def convolutional_barycenter2d(A, reg, weights=None, numItermax=10000, stopThr=1
993993
[Y, X] = np.meshgrid(t, t)
994994
xi1 = np.exp(-(X - Y)**2 / reg)
995995

996-
def K(x): return np.dot(np.dot(xi1, x), xi1)
996+
def K(x):
997+
return np.dot(np.dot(xi1, x), xi1)
997998

998999
while (err > stopThr and cpt < numItermax):
9991000

0 commit comments

Comments
 (0)